Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.518
Filtrar
Más filtros

Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38935626

RESUMEN

BACKGROUND: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. OBJECTIVE: To study IL-13 induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. METHODS: Quantitative CT (qCT) lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 severe, 11 non-severe asthma and 18 healthy participants) in the Severe Asthma Research Program (SARPIII) and measured for mucin and cilia related proteins. Epithelial cells were differentiated in air-liquid interphase (ALI) with IL-13 +/-dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF) and epithelial integrity (transepithelial electrical resistance, TEER). RESULTS: Increased Muc5AC (Δ+263.2±92.7 lums/EpiArea) and decreased ciliated cells (Δ-0.07±0.03 Foxj1+cells/EpiArea) were observed in biopsies from severe asthma when compared to healthy (p<0.01 and p=0.047 respectively). RNAseq of epithelial cell brushes confirmed a Muc5AC increase with a decrease in a 5-gene cilia-related mean in severe asthma compared to healthy (all p<0.05). IL-13 (5 ng/mL) differentiated ALI cultures of healthy and asthmatic (severe and non-severe participants) increased Muc5AC, decreased cilia (α-acytl-tubulin) in healthy (Δ+6.5±1.5%, Δ-14.1±2.7%; all p<0.001 respectively) and asthma (Δ+4.4±2.5%, Δ-13.1±2.7%; p=0.084, p<0.001 respectively); decreased epithelial integrity (TEER) in healthy (-140.9±21.3 [ohms], p<0.001) while decreasing CBF in asthma (Δ-4.4±1.7 [Hz], p<0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC but there was restoration of cilia in healthy and asthma participants (absolute increase of 67.5% and 32.5% cilia, all p<0.05 respectively) while CBF increased (Δ+3.6±1.1 [Hz], p<0.001) and TEER decreased (only in asthma Δ-37.8±16.2 [ohms] p<0.05). CONCLUSIONS: IL-13 drives features of airway remodeling in severe asthma which are partially reversed by inhibiting IL-4Rα receptor in vitro.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38820123

RESUMEN

RATIONALE: Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker-signature to predict sputum eosinophilia in asthma. METHODS: VOCs emitted into the space above sputum samples (headspace) from severe asthmatics (n=36) were collected onto sorbent tubes and analysed using thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ≥3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: (I) acute asthmatics according to blood eosinophilia ≥0.3x109cells/L or sputum eosinophilia of ≥ 3% in the UK EMBER consortium (n=65) and U-BIOPRED-IMI consortium (n=42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analysed by gas-chromatography-mass spectrometry (GC×GC-MS -EMBER or GC-MS -U-BIOPRED). MAIN RESULTS: The in vitro headspace identified 19 VOCs associated with sputum eosinophilia and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ≥ 3% in headspace (AUROC (95% CI) 0.90(0.80-0.99), p<0.0001), correlated inversely with sputum eosinophil % (rs= -0.71, p<0.0001) and outperformed FeNO (AUROC (95% CI) 0.61(0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89(0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90(0.75-1.0) in U-BIOPRED - again outperforming FeNO in U-BIOPRED 0.62 (0.33-0.90). CONCLUSIONS: We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point of care clinical sensors.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38599290

RESUMEN

BACKGROUND: Neutrophilic asthma (NA) is a severe asthma phenotype associated with steroid resistance and IL-1ß overproduction; however, the exact mechanism remains unclear. Moreover, the dysfunction of TNF-α signaling pathway, a regulator of IL-1ß production, was associated with the deficiency of ovarian tumor protease deubiquitinase with linear linkage specificity (otulin) in autoimmune patients. OBJECTIVE: We hypothesized that otulin downregulation in macrophages (Mφ) could trigger Mφ activation via the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway. METHODS: We assessed the expressions of otulin in blood monocyte subsets from NA patients and in alveolar Mφ from NA mice. Additionally, we evaluated the functional consequences of otulin deficiency in bone marrow-derived Mφ. The effects of inhibiting receptor-interacting protein kinase (RIPK)-1 and RIPK-3 on neutrophils and group 3 innate lymphoid cells (ILC3s) were assessed in vitro and in vivo. RESULTS: When comparing nonclassical monocytes, a significant downregulation of otulin in the intracellular components was observed in NA patients compared to healthy controls (P = .005). Moreover, isolated alveolar Mφ from the NA mice exhibited lower otulin expression compared to those from control mice. After otulin knockdown in bone marrow-derived Mφ, we observed spontaneous IL-1ß production depending on NLRP3 inflammasome. Moreover, the infiltrated neutrophils and ILC3s were significantly decreased by combined treatment of RIPK-1 and RIPK-3 inhibitors through blocking IL-1ß release in NA. CONCLUSIONS: IL-1ß overproduction caused by a deficiency of otulin, an upstream triggering factor, could be a promising diagnostic and therapeutic target for NA.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38848878

RESUMEN

BACKGROUND: Switching biologics is now common practice in severe eosinophilic asthma. After insufficient response to anti-IL-5 or 5 receptor (anti-IL-5/5R), the optimal switch between an anti-IL-4R mAb (interclass) or another anti-IL-5/5R drug (intraclass) remains unknown. OBJECTIVE: We sought to compare the effectiveness of these 2 strategies in asthma control in patients with severe eosinophilic asthma and insufficient response to an anti-IL-5/5R mAb. METHODS: We emulated a target randomized trial using observational data from the Recherche sur les AsthMes SEvèreS (RAMSES) cohort. Eligible patients were switched to an anti-IL-4R mAb or another anti-IL-5/5R drug after insufficient response to an anti-IL-5/5R mAb. The primary outcome was the change in Asthma Control Test score at 6 months. RESULTS: Among the 2046 patients in the cohort, 151 were included in the study: 103 switched to an anti-IL-4R mAb and 48 to another anti-IL-5/5R. At 6 months, the difference in Asthma Control Test score improvement was not statistically significant (mean difference groups, 0.82 [-0.47 to 2.10], P = .213). The interclass group exhibited greater cumulative reduction in oral corticosteroid dose (Pinter-intra, -1.05 g [-1.76 to -0.34], P = .041). The interclass group had a better effect, although not significantly, on reducing exacerbations (Δinter-intra, -0.37 [-0.77 to 0.02], P = .124) and increasing lung function (FEV1) (126.8 mL [-12.7 to 266.4], P = .124). CONCLUSIONS: After anti-IL-5/5R mAb insufficient response, switching to dupilumab demonstrated similar improvement in Asthma Control Test scores compared with intraclass switching. However, it appeared more effective in reducing oral corticosteroid use. Larger studies are warranted to confirm these results.

5.
J Allergy Clin Immunol ; 153(2): 435-446.e4, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805024

RESUMEN

BACKGROUND: Airway remodeling is a prominent feature of asthma, which involves increased airway smooth muscle mass and altered extracellular matrix composition. Bronchial thermoplasty (BT), a bronchoscopic treatment for severe asthma, targets airway remodeling. OBJECTIVE: We sought to investigate the effect of BT on extracellular matrix composition and its association with clinical outcomes. METHODS: This is a substudy of the TASMA trial. Thirty patients with severe asthma were BT-treated, of whom 13 patients were treated for 6 months with standard therapy (control group) before BT. Demographic data, clinical data including pulmonary function, and bronchial biopsies were collected. Biopsies at BT-treated and nontreated locations were analyzed by histological and immunohistochemical staining. Associations between histology and clinical outcomes were explored. RESULTS: Six months after treatment, it was found that the reticular basement membrane thickness was reduced from 7.28 µm to 5.74 µm (21% relative reduction) and the percentage area of tissue positive for collagen increased from 26.3% to 29.8% (13% relative increase). Collagen structure analysis revealed a reduction in the curvature frequency of fibers. The percentage area positive for fibulin-1 and fibronectin increased by 2.5% and 5.9%, respectively (relative increase of 124% and 15%). No changes were found for elastin. The changes in collagen and fibulin-1 negatively associated with changes in FEV1 reversibility. CONCLUSIONS: Besides reduction of airway smooth muscle mass, BT has an impact on reticular basement membrane thickness and the extracellular matrix arrangement characterized by an increase in tissue area occupied by collagen with a less dense fiber organization. Both collagen and fibulin-1 are negatively associated with the change in FEV1 reversibility.


Asunto(s)
Asma , Termoplastia Bronquial , Humanos , Bronquios/cirugía , Bronquios/patología , Remodelación de las Vías Aéreas (Respiratorias) , Asma/tratamiento farmacológico , Matriz Extracelular/patología , Colágeno
6.
Artículo en Inglés | MEDLINE | ID: mdl-38761997

RESUMEN

BACKGROUND: Rhinovirus (RV) infections trigger wheeze episodes in children. Thus, understanding of the lung inflammatory response to RV in children with wheeze is important. OBJECTIVES: This study sought to examine the associations of RV on bronchoalveolar lavage (BAL) granulocyte patterns and biomarkers of inflammation with age in children with treatment-refractory, recurrent wheeze (n = 616). METHODS: Children underwent BAL to examine viral nucleic acid sequences, bacterial cultures, granulocyte counts, and phlebotomy for both general and type-2 inflammatory markers. RESULTS: Despite the absence of cold symptoms, RV was the most common pathogen detected (30%), and when present, was accompanied by BAL granulocytosis in 75% of children. Compared to children with no BAL pathogens (n = 341), those with RV alone (n = 127) had greater (P < .05) isolated neutrophilia (43% vs 16%), mixed eosinophils and neutrophils (26% vs 11%), and less pauci-granulocytic (27% vs 61%) BAL. Children with RV alone furthermore had biomarkers of active infection with higher total blood neutrophils and serum C-reactive protein, but no differences in blood eosinophils or total IgE. With advancing age, the log odds of BAL RV alone were lower, 0.82 (5th-95th percentile CI: 0.76-0.88; P < .001), but higher, 1.58 (5th-95th percentile CI: 1.01-2.51; P = .04), with high-dose daily corticosteroid treatment. CONCLUSIONS: Children with severe recurrent wheeze often (22%) have a silent syndrome of lung RV infection with granulocytic bronchoalveolitis and elevated systemic markers of inflammation. The syndrome is less prevalent by school age and is not informed by markers of type-2 inflammation. The investigators speculate that dysregulated mucosal innate antiviral immunity is a responsible mechanism.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38797239

RESUMEN

BACKGROUND: Lactotransferrin (LTF) has an immunomodulatory function, and its expression levels are associated with asthma susceptibility. OBJECTIVES: We sought to investigate LTF messenger RNA (mRNA) expression levels in human bronchial epithelial cells (BECs) as an anti-type 2 (T2) asthma biomarker. METHODS: Association analyses between LTF mRNA expression levels in BECs and asthma-related phenotypes were performed in the Severe Asthma Research Program (SARP) cross-sectional (n = 155) and longitudinal (n = 156) cohorts using a generalized linear model. Correlation analyses of mRNA expression levels between LTF and all other genes were performed by Spearman correlation. RESULTS: Low LTF mRNA expression levels were associated with asthma susceptibility and severity (P < .025), retrospective and prospective asthma exacerbations, and low lung function (P < 8.3 × 10-3). Low LTF mRNA expression levels were associated with high airway T2 inflammation biomarkers (sputum eosinophils and fractional exhaled nitric oxide; P < 8.3 × 10-3) but were not associated with blood eosinophils or total serum IgE. LTF mRNA expression levels were negatively correlated with expression levels of TH2 or asthma-associated genes (POSTN, NOS2, and MUC5AC) and eosinophil-related genes (IL1RL1, CCL26, and IKZF2) and positively correlated with expression levels of TH1 and inflammation genes (IL12A, MUC5B, and CC16) and TH17-driven cytokines or chemokines for neutrophils (CXCL1, CXCL6, and CSF3) (P < 3.5 × 10-6). CONCLUSIONS: Low LTF mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations through upregulation of airway T2 inflammation. LTF is a potential anti-T2 biomarker, and its expression levels may help determine the balance of eosinophilic and neutrophilic asthma.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39079117

RESUMEN

Impaired airway epithelial barrier and decreased expression of E-cadherin are key features of severe asthma. As a gatekeeper of the mucosa, E-cadherin can be cleaved from the cell surface and released into the apical lumen as a soluble form (sE-cadherin).This study was aimed to investigate the role of sE-cadherin in severe asthma.Induced sputum was obtained from healthy subjects and patients with asthma. Two murine models of severe asthma were established using either TDI (toluene diisocyanate) or OVA (ovalbumin)/CFA (complete Freund's adjuvants). The role of sE-cadherin in severe asthma was evaluated by intraperitoneal injection of DECMA-1, a neutralizing antibody against sE-cadherin. Mice or THP-1-derived macrophages were treated with recombinant sE-cadherin to explore the pro-inflammatory mechanism of sE-cadherin.Severe asthma patients had a significantly higher sputum sE-cadherin level than the health subjects with mild to moderate asthma, which were positively correlated with sputum HMGB1 level and glucocorticoid dosage required for daily control. Allergen exposure markedly increased sE-cadherin level in the bronchoalveolar lavage fluid in mice. Treatment of DECMA-1 significantly attenuated allergen-induced airway inflammation and hyperresponsivenes in both models of severe asthma. While exposure to recombinant sE-cadherin dramatically up-regulated VEGF expression in THP-1-derived macrophages, and increased neutophlil and eosinophil infiltration into the airway as well as the release of VEGF and IL-6 in mice, both of which can be suppressed by pharmacological inhibition of ERK signaling.Taken together, our data indicated that sE-cadherin contributed to the airway inflammation of severe asthma in an ERK-depedent pathway.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39051933

RESUMEN

MiR-155-5p is known to increase in innate and adaptive immune cells in response to IL-13 and is associated with asthma severity. However, little is known about its role in airway structural cells. BECs isolated from healthy donors and severe asthma patients were stimulated with IL-13. MiR-155-5p expression and release were measured by RT-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13Rα1, IL-13Rα2, MUC5AC, IL-8 and Eotaxin-1 expression were measured by RT-PCR and western blot. BECs repair process was assessed by wound healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by western blot. Dual Luciferase assay was used to determine miR-155-5p target genes associated to IL-13 receptors signaling. BECs from severe asthma showed an increased expression and exosomal release of miR-155-5p at baseline that was amplified by IL-13 stimulation. BECs from asthmatics expressed more IL-13Rα1 and less IL-13Rα2 than healthy donors and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. MiR-155-5p overexpression favored MUC5AC, IL-8 and Eotaxin-1 through IL-13Rα1/SOCS1/STAT6 pathway to the detriment of a delayed repair process with a downregulated IL-13Rα2/MAPK14/c-Jun/c-Fos signaling. Dual Luciferase assay confirmed that miR-155-5p modulates both IL-13 receptors pathways by directly targeting SOCS1, c-Fos and MAPK14. MiR-155-5p is overexpressed in severe asthma BECs and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin and eosinophils related genes to detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in severe asthma.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39104317

RESUMEN

Severe asthma is a syndromic label assigned to patients based on clinical parameters, yet there are diverse underlying molecular endotypes in severe asthma pathobiology. Immunophenotyping of asthma biospecimens commonly includes a mixture of granulocytes and lymphocytes. Recently, a subset of severe asthma patients was defined as non-type 2 with neutrophil-enriched inflammation associated with increased Th17 CD4+ T cells and IL-17 levels. Here, we used an allergen-driven mouse model of increased IL-17 and mixed granulocyte lung inflammation to determine the impact of upstream regulation by an Anticalin protein that specifically binds IL-23. Airway administration of the IL-23 binding Anticalin protein (AcIL-23) decreased lung neutrophils, eosinophils, macrophages, and lymphocytes, IL-17+ CD4 T cells, mucous cell metaplasia and methacholine-induced airway hyperresponsiveness. Selective targeting of IL-23 with a monoclonal antibody (IL-23p19) (αIL-23) also decreased macrophages, IL-17+ CD4 T cells and airway hyperresponsiveness. In contrast, a monoclonal antibody against IL-17A (αIL-17A) had no significant effect on airway hyperresponsiveness, but did decrease lung neutrophils, macrophages, and IL-17+ CD4 T cells. Targeting the IL-23 pathway did not significantly change IL-5+ or IL-13+ CD4 T cells. Together, these data indicate that airway AcIL-23 mirrored the activity of systemic anti-IL-23 antibody to decrease airway hyperresponsiveness in addition to mixed granulocytic inflammation, and that these protective actions were broader than blocking only IL-17A or IL-5, which selectively decreased airway neutrophils and eosinophils, respectively.

11.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253462

RESUMEN

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Asunto(s)
Asma , Factor A de Crecimiento Endotelial Vascular , Adulto , Humanos , Proteómica , Factor 2 de Crecimiento de Fibroblastos , Citocinas/metabolismo , Lavado Broncoalveolar , Quimiocinas , Líquido del Lavado Bronquioalveolar
12.
Allergy ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425088

RESUMEN

BACKGROUND: Increasing evidence is available about the presence of increased serum concentration of immunoglobulin (Ig) free light chains (FLCs) in both atopic and non-atopic inflammatory diseases, including severe asthma, providing a possible new biomarker of disease. METHODS: We analyzed clinical and laboratory data, including FLCs, obtained from a cohort of 79 asthmatic subjects, clinically classified into different GINA steps. A control group of 40 age-matched healthy donors (HD) was considered. Particularly, HD have been selected according to the absence of monoclonal components (in order to exclude paraproteinemias), were tested for total IgE (that were in the normal ranges) and were negative for aeroallergens specific IgE. Moreover, no abnormality of common inflammatory markers (i.e., erythrocyte sedimentation rate and C-reactive protein) was detectable. RESULTS: FLC-k levels were significantly increased in the asthmatic population, compared to the control group. Despite the absence of statistically significant differences in FLC-λ levels, the FLC-k/FLC-λ ratio displayed remarkable differences between the two groups. A positive correlation between FLC-κ and FLC-λ levels was found. FLC- λ level displayed a significant negative correlation with the FEV1 value. Moreover, the FLC-κ /FLC- λ ratio was negatively correlated with the SNOT-22 score and a positive correlation was observed between FLCs and Staphylococcus Aureus IgE enterotoxins sensitization. CONCLUSIONS: Our findings confirmed the role of FLCs in asthma as a potential biomarker in an inflammatory disease characterized by different endotypes and phenotypes. In particular, FLC-κ and FLC-k/FLC-λ ratio could be a qualitative indicator for asthma, while FLC-λ levels could be a quantitative indicator for clinical severity parameters.

13.
Allergy ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38923444

RESUMEN

BACKGROUND: Biologic asthma therapies reduce exacerbations and long-term oral corticosteroids (LTOCS) use in randomized controlled trials (RCTs); however, there are limited data on outcomes among patients ineligible for RCTs. Hence, we investigated responsiveness to biologics in a real-world population of adults with severe asthma. METHODS: Adults in the International Severe Asthma Registry (ISAR) with ≥24 weeks of follow-up were grouped into those who did, or did not, initiate biologics (anti-IgE, anti-IL5/IL5R, anti-IL4/13). Treatment responses were examined across four domains: forced expiratory volume in 1 second (FEV1) increase by ≥100 mL, improved asthma control, annualized exacerbation rate (AER) reduction ≥50%, and any LTOCS dose reduction. Super-response criteria were: FEV1 increase by ≥500 mL, new well-controlled asthma, no exacerbations, and LTOCS cessation or tapering to ≤5 mg/day. RESULTS: 5.3% of ISAR patients met basic RCT inclusion criteria; 2116/8451 started biologics. Biologic initiators had worse baseline impairment than non-initiators, despite having similar biomarker levels. Half or more of initiators had treatment responses: 59% AER reduction, 54% FEV1 increase, 49% improved control, 49% reduced LTOCS, of which 32%, 19%, 30%, and 39%, respectively, were super-responses. Responses/super-responses were more frequent in biologic initiators than in non-initiators; nevertheless, ~40-50% of initiators did not meet response criteria. CONCLUSIONS: Most patients with severe asthma are ineligible for RCTs of biologic therapies. Biologics are initiated in patients who have worse baseline impairments than non-initiators despite similar biomarker levels. Although biologic initiators exhibited clinical responses and super-responses in all outcome domains, 40-50% did not meet the response criteria.

14.
Int Arch Allergy Immunol ; 185(3): 267-273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38061348

RESUMEN

INTRODUCTION: Severe asthma has a poor response to hormone therapy and a poor level of control, so the discovery of new pathogenetic mechanisms is important for diagnosing and treating severe asthma. IL-35 may play a protective role in autoimmune diseases by directly or indirectly inhibiting the secretion of IL-17, which is an important proinflammatory factor involved in the occurrence and development of autoimmune diseases. The autologous serum skin test (ASST) is a good sensitivity and specificity screening test for autoimmune functional autoantibodies. We compared the levels of IL-35 and IL-17 in serum samples, the positive rate of ASST, the level of exhaled nitric oxide (FeNO), and the atopic constitution in patients with severe asthma to those with mild-to-moderate asthma so as to explore the possible autoimmune pathogenesis of severe asthma. METHODS: Patients with mild-to-moderate and severe asthma were enrolled. Their age, gender, smoking history, family history of asthma, history of allergic rhinitis, positive allergen results, serum total IgE (TlgE), allergen-specific IgE (slgE), routine blood, ASST results, and FeNO test results were compared and analyzed. The IL-35 and IL-17 levels in serum samples from both groups were measured by enzyme-linked immunosorbent assay for comparison and analysis. The SPSS 22.0 software package was used for statistical analysis. RESULTS: A total of 50 patients with mild-to-moderate asthma and 31 patients with severe asthma were included in this study. The proportion of patients with a history of smoking and a family history of asthma was significantly higher in the severe asthma group compared to the mild-to-moderate asthma group (all p < 0.05); the number of positive allergen tests was significantly lower in patients with severe asthma compared to those with mild-to-moderate asthma (p < 0.001). The rate of positive ASST was significantly higher in patients with severe asthma than in patients with mild-to-moderate asthma (p < 0.05). Serum IL-17 levels were significantly higher in patients with severe asthma than in patients with mild-to-moderate asthma (p < 0.05), but serum IL-35 level between the two group was not significantly different (p = 0.113). ASST-positive patients had a statistically significant increase in the risk of developing severe asthma, while patients with allergen positive were less likely to develop severe asthma (positive ASST: OR = 5.277, p = 0.024; allergen positivity: OR = 0.123, p = 0.001). CONCLUSIONS: IL-35 has a weaker inhibitory effect on high IL-17 expression in patients with severe asthma, and the rate of positive ASST was significantly higher in patients with severe asthma, which all suggested the possibility of autoimmune pathogenesis in patients with severe asthma.


Asunto(s)
Asma , Enfermedades Autoinmunes , Humanos , Interleucina-17 , Pruebas Cutáneas/métodos , Inmunoglobulina E , Alérgenos
15.
Int Arch Allergy Immunol ; : 1-9, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688250

RESUMEN

INTRODUCTION: This study aimed to assess the effectiveness of fractional exhaled nitric oxide (FeNO) combined with pulmonary function testing (PFT) for predicting the treatment outcome of patients with severe asthma receiving dupilumab. METHODS: A total of 31 patients with severe asthma visiting our hospital from January 2022 to June 2023 were included in this study, with 28 patients completing a 16-week course of dupilumab treatment. Baseline clinical data, including demographic information, blood eosinophil counts, serum IgE levels, FeNO, asthma control test (ACT), asthma control questionnaire (ACQ), and other parameters, were collected. A predictive model using a generalized linear model was established. RESULTS: Following the 16-week course of dupilumab treatment, 22 patients showed effective response based on GETE scores, while 6 patients were nonresponders. Notably, significant improvements were observed in clinical parameters such as blood eosinophil counts, serum IgE levels, FeNO, FEV1, FEV1%, ACT, and ACQ in both response groups (p < 0.05). FeNO and pulmonary function tests demonstrated AUC values of 0.530, 0.561, and 0.765, respectively, in predicting the clinical efficacy of dupilumab, which were lower than when FeNO was combined with FEV1%. The combination of FeNO and FEV1% had a sensitivity of 1.000 and specificity of 0.591 in predicting treatment response. CONCLUSION: The combined assessment of FeNO and FEV1% provides improved accuracy for predicting the clinical efficacy of dupilumab in managing severe asthma. However, further larger scale clinical studies with comprehensive follow-up data are needed to validate the therapeutic efficacy and applicability across diverse patient populations.

16.
FASEB J ; 37(3): e22799, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753412

RESUMEN

Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.


Asunto(s)
Asma , Interleucina-17 , Proteínas de la Membrana , Animales , Humanos , Ratones , Asma/metabolismo , Estudio de Asociación del Genoma Completo , Inflamación/metabolismo , Interleucina-17/genética , Interleucina-17/uso terapéutico , Lipopolisacáridos , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Esfingolípidos/metabolismo
17.
FASEB J ; 37(8): e23072, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498233

RESUMEN

Macrophage migration inhibitory factor (MIF) expression is controlled by a functional promoter polymorphism, where the number of tetranucleotide repeats (CATTn ) corresponds to the level of MIF expression. To examine the role of this polymorphism in a pre-clinical model of allergic asthma, novel humanized MIF mice with increasing CATT repeats (CATT5 and CATT7 ) were used to generate a physiologically relevant scale of airway inflammation following house dust mite (HDM) challenge. CATT7 mice expressing high levels of human MIF developed an aggressive asthma phenotype following HDM challenge with significantly elevated levels of immune cell infiltration, production of inflammatory mediators, goblet cell hyperplasia, subepithelial collagen deposition, and airway resistance compared to wild-type controls. Importantly the potent MIF inhibitor SCD-19 significantly mitigated the pathophysiology observed in CATT7 mice after HDM challenge, demonstrating the fundamental role of endogenous human MIF expression in the severity of airway inflammation in vivo. Up to now, there are limited reproducible in vivo models of asthma airway remodeling. Current asthma medications are focused on reducing the acute inflammatory response but have limited effects on airway remodeling. Here, we present a reproducible pre-clinical model that capitulates asthma airway remodeling and suggests that in addition to having pro-inflammatory effects MIF may play a role in driving airway remodeling.


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Humanos , Animales , Ratones , Pyroglyphidae , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Pulmón/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo
18.
Pediatr Allergy Immunol ; 35(3): e14112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520021

RESUMEN

BACKGROUND: It is unclear whether sensitization patterns differentiate children with severe recurrent wheeze (SRW)/severe asthma (SA) from those with non-severe recurrent wheeze (NSRW)/non-severe asthma (NSA). Our objective was to determine whether sensitization patterns can discriminate between children from the French COBRAPed cohort with NSRW/NSA and those with SRW/SA. METHODS: IgE to 112 components (c-sIgE) (ImmunoCAP® ISAC) were analyzed in 125 preschools (3-6 years) and 170 school-age children (7-12 years). Supervised analyses and clustering methods were applied to identify patterns of sensitization among children with positive c-sIgE. RESULTS: We observed c-sIgE sensitization in 51% of preschool and 75% of school-age children. Sensitization to house dust mite (HDM) components was more frequent among NSRW than SRW (53% vs. 24%, p < .01). Sensitization to non-specific lipid transfer protein (nsLTP) components was more frequent among SA than NSA (16% vs. 4%, p < .01) and associated with an FEV1/FVC < -1.64 z-score. Among sensitized children, seven clusters with varying patterns were identified. The two broader clusters identified in each age group were characterized by "few sensitizations, mainly to HDM." One cluster (n = 4) with "multiple sensitizations, mainly to grass pollen, HDM, PR-10, and nsLTP" was associated with SA in school-age children. CONCLUSIONS: Although children with wheeze/asthma display frequent occurrences and high levels of sensitization, sensitization patterns did not provide strong signals to discriminate children with severe disease from those with milder disease. These results suggest that the severity of wheeze/asthma may depend on both IgE- and non-IgE-mediated mechanisms.


Asunto(s)
Alérgenos , Asma , Niño , Preescolar , Animales , Humanos , Inmunoglobulina E , Asma/diagnóstico , Asma/epidemiología , Pyroglyphidae , Dermatophagoides pteronyssinus , Ruidos Respiratorios
19.
Artículo en Inglés | MEDLINE | ID: mdl-39074657

RESUMEN

BACKGROUND: Patients with severe asthma often have uncontrolled disease and experience mood disorders, particularly anxiety and depression. The autonomic nervous system plays an important role in asthma, mainly through the parasympathetic system (PANS), which favours bronchoconstriction and mental health status. OBJECTIVE: To evaluate the role of the activation of the PANS in uncontrolled asthma and mood disorders related. METHODS: Proof-of-concept cross-sectional study that analysed demographic and clinical variables reflecting asthma severity and control, lung function, inflammation (from induced sputum), evaluation of quality of life, the risk for anxiety and depression according to validated questionnaires. PANS analysis was conducted based on heart rate variability (HRV): SDNN (standard deviation of the difference between consecutive NN intervals), RMSSD (root mean square of the successive differences), pNN50 (percentage of consecutive NN intervals), TP (total power), and Pr (respiratory-related power). RESULTS: Thirty patients with asthma, grouped according to asthma control and the risk for anxiety and depression. Ten patients with uncontrolled asthma compared to the patients with controlled asthma showed significant differences (p<0.05) in SDNN (26.5 [8.2] vs 42.7 [29.7]), RMSSD (14.1 [6.5] vs 24 [20]), pNN50 (0.6 [1.5] vs 6.2 [11.8]), TP (0.0005 [0.00046] vs 0.0014 [0.00085]), and Pr (0.0003 [0.00025] vs 0.0007 [0.00060]) respectively. Thirteen patients at risk for anxiety and depression compared to the patients without showed reduced values (p<0.05) for SDNN (26.5 [7.9] vs 45.6 [31.3]), pNN50 (0.75 [1.4] to 7.12 [12.6]), TP (0.0005 [0.00048] to 0.0012 [0.0008]), and Pr (0.0003 [0.00027] to 0.0008 [0.00062]). CONCLUSION: Our results suggest that PANS activity is depressed in patients with uncontrolled asthma and common mood disorders as depression and anxiety, and the evaluation of HRV may be a useful means for follow-up of asthma control and related mood disorders.

20.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598121

RESUMEN

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda