Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Sci Technol ; 58(22): 9582-9590, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780619

RESUMEN

Wastewater treatment contributes substantially to methane (CH4) emissions, yet monitoring and tracing face challenges because the treatment processes are often treated as a "black box". Particularly, despite growing interest, the amount of CH4 carryover and influx from the sewer and its impacts on overall emissions remain unclear. This study quantified CH4 emissions from six wastewater treatment plants (WWTPs) across China, utilizing existing multizonal odor control systems, with a focus on Beijing and Guiyang WWTPs. In the Beijing WWTP, almost 90% of CH4 emissions from the wastewater treatment process were conveyed through sewer pipes, affecting emissions even in the aerobic zone of biological treatment. In the Guiyang WWTP, where most CH4 from the sewer was released at the inlet well, a 24 h online monitoring revealed CH4 fluctuations linked to neighborhood water consumption and a strong correlation to influent COD inputs. CH4 emission factors monitored in six WWTPs range from 1.5 to 13.4 gCH4/kgCODrem, higher than those observed in previous studies using A2O technology. This underscores the importance of considering CH4 influx from sewer systems to avoid underestimation. The odor control system in WWTPs demonstrates its potential as a cost-effective approach for tracing, monitoring, and mitigating CH4.


Asunto(s)
Metano , Aguas del Alcantarillado , Aguas Residuales , Metano/análisis , Aguas Residuales/química , Eliminación de Residuos Líquidos , China , Monitoreo del Ambiente
2.
J Environ Manage ; 358: 120852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608577

RESUMEN

Hydrogen sulfide (H2S) is one of the sewer gases commonly found in wastewater collection systems. This anaerobic degradation product causes issues, ranging from odor nuisances and health hazards to pipe corrosion. Several studies have provided an understanding of H2S formation mechanism, including simulations of H2S emissions in sewers, especially in pressurized systems. However, the present models necessitate a large amount of data due to the complexity of the H2S processes and common routine-monitoring water quality parameters may not fit the requirements. This study aims to simulate the fate and transport of H2S in both air and water phases in combined sewers, with a realization of practicableness of the application. The study case is centered around a fresh market in Bangkok, where the sewers are commonly plagued with garbage-related issues. These challenges pose difficulties for site monitoring across various aspects, necessitating the application of unconventional methods. On-site hydrodynamics, wastewater quality, and H2S gas concentration data were monitored on hourly and daily bases. It was found that the sulfides in the combined sewerage were correlated with sewage quality, e.g., COD, sulfate (SO42-), and pH concentrations in particular. The model results were in an acceptable range of accuracy (R2 = 0.63; NSE = 0.52; RMSE = 1.18) after being calibrated with the measured hydrogen sulfide gas concentration. The results lead to the conclusion that the simplified model is practical and remains effective even in sewers with untraditional conditions. This could hold promise as a fundamental tool in shaping effective H2S mitigation strategies.


Asunto(s)
Sulfuro de Hidrógeno , Aguas del Alcantarillado , Sulfuro de Hidrógeno/análisis , Aguas del Alcantarillado/química , Aguas Residuales/química , Modelos Teóricos , Eliminación de Residuos Líquidos/métodos , Monitoreo del Ambiente
3.
J Environ Manage ; 359: 121107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728984

RESUMEN

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.


Asunto(s)
Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S/genética , Aguas Residuales/microbiología , Ecología , Corrosión , Microbiota
4.
J Environ Manage ; 357: 120762, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574708

RESUMEN

Urban pluvial flooding is becoming a global concern, exacerbated by urbanization and climate change, especially in rapidly developing areas where existing sewer systems lag behind growth. In order to minimize a system's functional failures during extreme rainfalls, localized engineering solutions are required for urban areas chronically suffering from pluvial floods. This study critically evaluates the Deep Tunnel Sewer System (DTSS) as a robust grey infrastructure solution for enhancing urban flood resilience, with a case study in the Gangnam region of Seoul, South Korea. To do so, we integrated a one-dimensional sewer model with a rapid flood spreading model to identify optimal routes and conduit diameters for the DTSS, focusing on four flood-related metrics: the total flood volume, the flood duration, the peak flooding rate, and the number of flooded nodes. Results indicate that, had the DTSS been in place, it could have reduced historical flood volumes over the last decade by 50.1-99.3%, depending on the DTSS route. Regarding the conduit diameter, an 8 m diameter was found to be optimal for minimizing all flood-related metrics. Our research also developed the Intensity-Duration-Frequency (IDF) surfaces in three dimensions, providing a correlation between simulated flood-related metrics and design rainfall characteristics to distinguish the effect of DTSS on flood risk reduction. Our findings demonstrate how highly engineered solutions can enhance urban flood resilience, but they may still face challenges during extreme heavy rainfalls with a 80-year frequency or above. This study contributes to rational decision-making and emergency management in the face of increasing urban pluvial flood risks.


Asunto(s)
Inundaciones , Resiliencia Psicológica , Modelos Teóricos , Urbanización , República de Corea , Ciudades
5.
Environ Monit Assess ; 196(3): 307, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407658

RESUMEN

As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Entropía , Aguas del Alcantarillado , Monitoreo del Ambiente
6.
J Environ Manage ; 347: 119099, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778067

RESUMEN

Storm Water Management Model (SWMM) developed by the United States Environmental Protection Agency (EPA) has been widely applied throughout the world for analysis associated with stormwater runoff, combined sewers, and other drainage facilities. To appropriately manage the runoff in urban areas, an integrated system including the simulations of sewer flow, street flow, and regional channel flow, called the 1D/1D SWMM model, was advocated to be performed. Nevertheless, the execution efficiency of this integrated system still needs to be promoted to meet the demand for real-time forecasting of urban floods. The objective of this study is to seek an alternative for predicting water levels both in the sewer system and on the streets within an urban district during rainstorms by utilizing a dynamic neuron network model. To strengthen the physical structure of the artificial intelligence (AI) model and simultaneously make up for the lack of measured data, simulation results of the 1D/1D SWMM model are provided as labels for the training of the proposed model. The novelty of this research is to propose a new methodology to effectively train the AI model for predicting the spatial distributions of depths based on the hydrologic conditions, geomorphologic properties, as well as the network relation of the drainage system. A two-stage training procedure is proposed in this study to consider more possible inundation conditions in both sewer and street (open channel) drainage networks. The research findings show that the proposed methodology is capable of reaching satisfactory accuracy and assisting the numerical-based SWMM model for real-time warning of drainage systems in the urban district.


Asunto(s)
Modelos Teóricos , Agua , Inteligencia Artificial , Lluvia , Movimientos del Agua , Inundaciones
7.
J Environ Manage ; 303: 114231, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906833

RESUMEN

In recent years, combined sewer overflow (CSO) has been identified as a significant contributor to the deterioration of the urban water environment. It is thought that remolding it to a separate sewer system is a thorough and effective method of controlling the CSO in the appropriate area. However, according to current research, the separate stormwater sewer systems will also have overflow pollution due to functional defects, damaged or inappropriately connected with sewage, which has serious consequences for the separate system's operational efficiencies and the urban water environment. The event mean concentration, first flush effect, source apportionment, and correlation analysis of variables in overflow pollution generated in three residential catchments in Nanning, China, were investigated in this study. The results showed that the event mean concentration values in drainage outlets inappropriately connected with sewage were 2-4 times higher than those in stormwater outlets, especially for NH3-N, TN, and TP. Meanwhile, more than 80% of overflow events at outlets inappropriately connected with sewage had a weak first flush or even a weak dilution effect, with peak pollutant concentrations occurring 40-60 min after the overflow began. Besides, the discharge pollution load was primarily derived from the inside of the sewer. When the rainfall was heavy, the contribution rate of sewer sediment erosion exceeded 60%, which was much higher than the contribution rate of rainfall runoff and sewage. The variability in event mean COD and TSS concentrations was primarily attributed to the antecedent dry period and rainfall intensity. The COD concentration increased from 140.7 to 277.1 mg/L with the increase of antecedent dry period from 3 to 10 days. This study could help guide the implementation of targeted measures to treat overflow pollution in urban residential catchments, as well as the development of strategies to mitigate the effects on receiving water bodies.


Asunto(s)
Aguas del Alcantarillado , Movimientos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Lluvia
8.
Risk Anal ; 41(12): 2356-2391, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34056745

RESUMEN

Risk-informed asset management is key to maintaining optimal performance and efficiency of urban sewer systems. Although sewer system failures are spatiotemporal in nature, previous studies analyzed failure risk from a unidimensional aspect (either spatial or temporal), not accounting for bidimensional spatiotemporal complexities. This is owing to the insufficiency of good-quality data, which ultimately leads to under-/overestimation of failure risk. Here, we propose a generalized methodology/framework to facilitate a robust spatiotemporal analysis of urban sewer system failure risk, overcoming the intrinsic challenges of data imperfections-e.g., missing data, outliers, and imbalanced information. The framework includes a two-stage data-driven modeling technique that efficiently models the highly right-skewed sewer system failure data to predict the failure risk, leveraging a bidimensional space-time approach. We implemented our analysis for Bogotá, the capital city of Colombia. We train, test, and validate a battery of machine learning algorithms-logistic regression, decision trees, random forests, and XGBoost-and select the best model in terms of goodness-of-fit and predictive accuracy. Finally, we illustrate the applicability of the framework in planning/scheduling sewer system maintenance operations using state-of-the-art optimization techniques. Our proposed framework can help stakeholders to analyze the failure-risk models' performance under different discrimination thresholds, and provide managerial insights on the model's adequate spatial resolution and appropriateness of decentralized management for sewer system maintenance.

9.
J Environ Manage ; 246: 141-149, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176178

RESUMEN

Conceptual sewer models are useful tools to assess the fate of micropollutants (MPs) in integrated wastewater systems. However, the definition of their model structure is highly subjective, and obtaining a realistic simulation of the in-sewer hydraulic retention time (HRT) is a major challenge without detailed hydrodynamic information or with limited measurements from the sewer network. This study presents an objective approach for defining the structure of conceptual sewer models in view of modelling MP fate in large urban catchments. The proposed approach relies on GIS-based information and a Gaussian mixture model to identify the model optimal structure, providing a multi-catchment conceptual model that accounts for HRT variability across urban catchment. This approach was tested in a catchment located in a highly urbanized Italian city and it was compared against a traditional single-catchment conceptual model (using a single average HRT) for the fate assessment of reactive MPs. Results showed that the multi-catchment model allows for a successful simulation of dry weather flow patterns and for an improved simulation of MP fate compared to the classical single-catchment model. Specifically, results suggested that a multi-catchment model should be preferred for (i) degradable MPs with half-life lower than the average HRT of the catchment and (ii) MPs undergoing formation from other compounds (e.g. human metabolites); or (iii) assessing MP loads entering the wastewater treatment plant from point sources, depending on their location in the catchment. Overall, the proposed approach is expected to ease the building of conceptual sewer models, allowing to properly account for HRT distribution and consequently improving MP fate estimation.


Asunto(s)
Modelos Teóricos , Aguas Residuales , Ciudades , Aguas del Alcantarillado , Tiempo (Meteorología)
10.
J Environ Manage ; 231: 605-611, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30390445

RESUMEN

The objectives of this paper are 1) to estimate emissions in managing a sewer pipeline project from a life cycle perspective; and 2) to develop methods that can be used to assist engineers and stakeholders in the estimation especially when data are limited. The motivation is to provide an approach that can be used readily in practice to evaluate emissions in managing a sewer pipeline or a general infrastructure system by using available data. The life cycle assessment tool is applied over the pipe material manufacturing, installation, and maintenance phases. In the material manufacturing and installation phase, this research routinely tends to collect and evaluate detailed inventories data. The results show that the manufacturing phase contributes the most emissions. Material transportation in the installation also generates great amounts which are highly impacted by the transportation distance of vehicles. Emissions from activities such as equipment use and architecture and engineering services are not negligible which need to be considered in practice. In the maintenance phase, the study develops methods to estimate emissions based on the Markov chains model. The developed methods make it possible to estimate emissions within a given duration conventionally and at a 'steady state' phase once a strategy is applied. The study also presents a method to conduct the model sensitivity analysis using simulating results from Matlab tools. The analysis shows that the model has decent robustness. In addition, the methodology proposed may be applied to estimate emissions in other infrastructure management as well.


Asunto(s)
Efecto Invernadero , Transportes
11.
J Environ Sci (China) ; 27: 259-65, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25597685

RESUMEN

The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Nitratos/metabolismo , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Animales , Reactores Biológicos
12.
J Hazard Mater ; 467: 133618, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335612

RESUMEN

Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.


Asunto(s)
Desulfovibrio , Azufre , Humanos , Compuestos de Azufre , Corrosión , Aguas del Alcantarillado
13.
Sci Total Environ ; 952: 175853, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222807

RESUMEN

Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 µm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat. High-throughput sequencing showed similar relative abundances of genera related to carbon and sulfur metabolism in the DIP and CP pipes, whereas HDPE exhibited only half the relative abundance compared to that found in the other pipes. To explore the impact of pipe materials on the mechanisms of microbial response, a metagenomic approach was used to investigate the biological transformation of carbon and sulfur in wastewater. The annotations of the crucial enzyme-encoding genes related to methyl coenzyme M and sulfite reductase in DIP and CP were 50 and 110, respectively, whereas HDPE exhibited lower counts (25 and 70, respectively). This resulted in significantly lower carbon and sulfur metabolism capabilities in the HDPE biofilm than in the other two pipes. The stability of wastewater quality during the transmission process in HDPE pipes reduces the metabolic generation of toxic and harmful gases within the pipes, favoring the preservation of carbon sources for sewer systems. This study reveals the variations in carbon and sulfur metabolism in wastewater pipe systems influenced by pipe materials and provides insights for designing future sewers.


Asunto(s)
Biopelículas , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
14.
Sci Total Environ ; 921: 171231, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417509

RESUMEN

The deterioration of concrete sewer structures due to bio-corrosion presents critical and escalating challenges from structural, economic and environmental perspectives. Despite decades of research, this issue remains inadequately addressed, resulting in billions of dollars in maintenance costs and a shortened service life for sewer infrastructure worldwide. This challenge is exacerbated by the absence of standardized test methods and universally accepted mitigation strategies, leaving industries and stakeholders confronting an increasingly pressing problem. This paper aims to bridge this knowledge gap by providing a comprehensive review of the complex mechanisms of bio-corrosion, focusing on the formation and accumulation of hydrogen sulfide, its conversion into sulfuric acid and the subsequent deterioration of concrete materials. The paper also explores various factors affecting bio-corrosion rates, including environmental conditions, concrete properties and wastewater characteristics. The paper further highlights existing corrosion test strategies, such as chemical tests, in-situ tests and microbial simulations tests along with their general analytical parameters. The conversion of hydrogen sulfide into sulfuric acid is a primary cause of concrete decay and its progression is influenced by environmental conditions, inherent concrete characteristics, and the composition of wastewater. Through illustrative case studies, the paper assesses the practical implications and efficacy of prevailing mitigation techniques. Coating materials provide a protective barrier against corrosive agents among the discussed techniques, while optimised concrete mix designs enhance the inherent resistance and durability of the concrete matrix. Finally, this review also outlines the future prospects and challenges in bio-corrosion research with an aim to promote the creation of more resilient and cost-efficient materials for sewer systems.

15.
Water Res ; 264: 122205, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116612

RESUMEN

The severely low influent chemical oxygen demand (COD) concentration at wastewater treatment plants (WWTPs) has become a critical issue. A key factor is the excessive biodegradation of organic matter by microbial communities within sewer systems. Intense disinfection commonly adopted for medical wastewater leads to abundant residual chlorine entering sewers, likely causing significant changes in microbial communities and sewage quality in sewers, yet our understanding is limited. Through long-term sewer simulation batch tests, this study revealed the response mechanism of microbial communities to residual chlorine and its impact on organic matter concentration in sewage. Under residual chlorine stress, microbial community structure rapidly changed, and more complex microbial interactions were observed. Besides, pathways related to stress response such as two-component system were significantly enriched; pathways related to energy metabolism (such as carbon fixation in prokaryotes and citrate cycle) in microbial communities were inhibited, and carbon metabolism shifted from the Embden-Meyerhof pathway to the pentose phosphate pathway to enhance cellular reducing power, reduce oxidative stress, and consequently decrease organic matter degradation. Therefore, compared to sewers with normal disinfection, concentrations of COD and dissolved organic carbon in sewage under chlorine stress increased by 12.6 % and 7.4 %, respectively. Besides, the decay and transformation of residual chlorine in sewers were explored. These findings suggest a new approach to medical wastewater discharge management: placing the medical wastewater outlet at the upstream in sewer systems, which ensures that residual chlorine consumption reaches maximum during long-distance transportation, mitigating its harmful effects on WWTPs, and increases the influent organic matter concentration, thereby reducing the need for additional carbon sources.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Cloro , Desinfección
16.
Environ Pollut ; 342: 123136, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092341

RESUMEN

Municipal sewer systems have received increasing attention due to the magnitude of the microplastic stock and its potential ecological impacts. However, as a critical aspect of the adverse impacts, little is known about the plastisphere that forms in these engineered environments. Using high-throughput absolute quantification sequencing, we conducted a systemic study combining field survey and laboratory batch test to explain the general plastisphere pattern and the role of environmental and polymeric factors in driving plastisphere succession and assembly there. We demonstrated the capacity of microplastics to support high levels of microbial colonization, increasing by 8.7-56.0 and 1.26-5.62 times at field and laboratory scales, respectively, despite the less diverse communities hosted in the resulting plastisphere. Sediment communities exhibited higher diversity but greater loss of specific operational taxonomic units in their plastisphere than in the wastewater. The former plastisphere had primarily an enhanced methanogenesis-oriented metabolic network linked to hydrolysis fermentation, hydrogen-producing acetogenesis, and denitrification, while the latter had a pronounced niche partitioning and competitive interaction network. Exogenous substrate flux and composition were key in stimulating plastisphere community growth and succession. Furthermore, the high nitrogen baseline facilitated alternative niche formation for plastisphere nitrifiers and denitrifiers, and the plastisphere pathogens associated with denitrification and plastic biodegradation functions increased significantly. The aerobic state also promoted a 1.71 times higher colonizer load and a denser interaction pattern than the anaerobic state. Selective filtering by polymers was evident: polyethylene supported higher plastisphere diversity than polypropylene. This study provides new insights into the mechanisms driving colonizer loads and the adaptive succession and assembly of the plastisphere in such a typically hydrodynamic and highly contaminated environment. The results help to fill the knowledge gap in understanding the potential role of microplastics in shaping the microecology of sewers and increasing health risks and substrate loss during sewer transfer.


Asunto(s)
Microplásticos , Plásticos , Biodegradación Ambiental , Fermentación , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Environ Sci Pollut Res Int ; 31(9): 13075-13088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38240967

RESUMEN

Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.


Asunto(s)
Bacterias , Microbiota , Bacterias/metabolismo , Proteobacteria , Aguas Residuales , Bacteroidetes
18.
Water Res X ; 24: 100231, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39070728

RESUMEN

Chemicals are commonly dosed in sewer systems to reduce the emission of hydrogen sulfide (H2S) and methane (CH4), incurring high costs and environmental concerns. Nitrite dosing is a promising approach as nitrite can be produced from urine wastewater, which is a feasible integrated water management strategy. However, nitrite dosing usually requires strict conditions, e.g., relatively high nitrite concentration (e.g., ∼200 mg N/L) and acidic environment, to inhibit microorganisms. In contrast to "microbial inhibition", this study proposes "microbial utilization" concept, i.e., utilizing nitrite as a substrate for H2S and CH4 consumption in sewer. In a laboratory-scale sewer reactor, nitrite at a relatively low concentrations of 25-48 mg N/L was continuously dosed. Two nitrite-dependent microbial utilization processes, i.e., nitrite-dependent anaerobic methane oxidation (n-DAMO) and microbial sulfide oxidation, successfully occurred in conjunction with nitrite reduction. The occurrence of both processes achieved a 58 % reduction in dissolved methane and over 90 % sulfide removal in the sewer reactor, with microbial activities measured as 15.6 mg CH4/(L·h) and 29.4 mg S/(L·h), respectively. High copy numbers of n-DAMO bacteria and sulfide-oxidizing bacteria (SOB) were detected in both sewer biofilms and sediments. Mechanism analysis confirmed that the dosed nitrite at a relatively low level did not cause the inhibition of sulfidogenic process due to the downward migration of activity zones in sewer sediments. Therefore, the proposed "microbial utilization" concept offers a new alternative for simultaneous removal of sulfide and methane in sewers.

19.
Heliyon ; 9(1): e12833, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36711302

RESUMEN

Background: The American cockroach, Periplaneta americana, is the most prevalent domiciliary and invasive urban pest in the sewer and waste water system. It poses a substantial threat to human public health and home allergens. This study was conducted at Universiti Sains Malaysia main campus to highlight and provide information on the control and management of American cockroach infestations in sewage systems by comparing the efficiency of fipronil 0.05% gel bait with imidacloprid 2.5% gel bait. A total number of adult and nymph stages of trapped American cockroaches was recorded using glass jar traps at eight sampling sites. Gel baits were placed beneath the lids of each manhole shaft along the inner wall perimeter. Results: The use of fipronil and imidacloprid gel baits in the sewer system resulted in a significant difference (P = 0.013). Imidacloprid 2.5% gel bait, compared to fipronil 0.05% gel bait, is the most effective treatment technique for reducing American cockroaches' population in sewer systems, with a high reduction percentage mean for both adult (91.17%) and nymph (85.50%) stages. Conclusion: As a conclusion, imidacloprid gel bait can effectively control cockroaches in sewer systems up to eight weeks.

20.
Sci Total Environ ; 903: 166475, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625723

RESUMEN

Bio-metabolism of diverse communities is the main reason of water quality variation in sewers, and the signal molecule generation of communities is dementated to be the key regulation procedure for community metabolism. To reveal the mechanism of pollutant biotransformation in complex sewer environment, this study explored the formation of bacteria and fungi and the signal molecule transduction characteristics in a pilot sewer. In this study, several kinds of signal molecules that produced by bacteria and fungi (C4-HSL, C6-HSL, C8-HSL, farnesol and tyrosol) were detected along the formation process of sewer biofilms. The results showed that, in the early stage, bacterial AHLs signaling molecules are beneficial to the synthesis of EPS, providing a good material basis for the growth of bacterial flora. In addition, tyrosol stimulates the formation of embryonic tubes in yeast cells, further promoting the growth of hyphae. At the later stage, AHLs signaling molecules and tyrosol jointly promoted the growth of biofilms. In conclusion, it is precisely because of the coexistence of bacteria and fungi in the sewer system that the generated signal molecules can jointly promote the synthesis and growth of biofilms through different pathways, and have positive feedback on the biodegradation of various pollutants. Based on the exploration, the ecological patterns of bacterial-fungal communities in urban sewer system were proposed and it could improve the understanding on the pollutant transformation behaviors in sewers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda