Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 345: 118808, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633105

RESUMEN

A lab-scale integrated fixed-film activated sludge (IFAS) reactor was mplemented with the oxic-settling anaerobic (OSA) cycle for reducing sewage sludge production through the addition of an anoxic/anaerobic sludge holding tank (SHT) along the sludge recycle line. The IFAS-OSA system was operated under the different hydraulic retention time (HRT) in the SHT (HRTSHT) of 12 h and 6 h, at an oxidation-reduction potential (ORP) < -91 mV and solid retention time (SRT) between 39 and 126 d. Furthermore, the effect of temperature increase in the SHT (TSHT) from ambient (19.8-25.6 °C) to mesophilic (35 °C) conditions was investigated. The system performances were monitored in terms of sludge minimization and dewaterability efficiencies as well as carbon and nutrients reduction. The observed sludge yield (Yobs) for the IFAS system was 0.37(±0.06) mg VSS/mg COD. After OSA implementation Yobs decreased by 32% and 46-65% at HRTSHT of 12 h and 6 h, respectively, indicating that prolonged exposure to anoxic/anaerobic conditions was not beneficial for sludge reduction. The lowest Yobs of 0.09(±0.05) mg VSS/mg COD (76% lower than that in the IFAS system) was obtained at an HRTSHT of 6 h and when TSHT was set at 35 °C. OSA implementation did not affect COD and NH4+ oxidation of the IFAS system (90-96% and 99%, respectively) and improved total nitrogen (TN) reduction (31-53%) due to improved denitrification in the SHT. On the contrary, sludge dewaterability worsened following OSA implementation, which was linked to the increased levels of exopolymeric substances in the suspended biomass.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Nitrógeno
2.
J Environ Manage ; 319: 115756, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982561

RESUMEN

Excess sludge production in wastewater treatment plants has become an enormous environmental issue worldwide mainly due to the increased efforts towards wastewater purification. Researchers and plant operators are looking for technological solutions to reduce sludge production through the upgrading of existing technologies and configurations or by substituting them with alternative solutions. Several strategies have been identified to reduce sludge production, including the use of biological and physical-chemical methods (or a combination of them) and novel technologies, although many have not been sufficiently tested at full-scale. To select the most suitable system for sludge reduction, understanding the reduction mechanisms, advantages, disadvantages, and the economic and environmental impact of each technology is essential. This work offers a comprehensive and critical overview of mainstream sludge reduction technologies and underlying mechanisms from laboratory to full scale, and describes potential application, configuration, and integration with conventional systems. Research needs are highlighted, and a techno-economic-environmental comparison of the existing technologies is also proposed.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
3.
J Environ Manage ; 264: 110490, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32250911

RESUMEN

Sludge recovery/disposal represents one of the most crucial aspects related to the management of wastewater treatment plants. The most widely diffused technology for the treatment of industrial and municipal wastewaters is the conventional activated sludge (CAS) process, which is characterized by a relatively high excess sludge production. Different technical solutions are proposed in the literature for sludge minimization and they can be applied either on wastewater line (WL) or sludge line (SL). This work is focused on different approaches based on the use of Thermophilic Aerobic Membrane Reactor (TAMR): this can be added to a CAS plant, and integrated to WL or SL, yielding a significant sludge reduction. The process performance was analysed in terms of volatile solids (VS) reduction and specific sludge production. The TAMR was tested both at full-scale and pilot-scale with different feeding substrates: industrial wastewater for the full-scale plant; industrial wastewater, sludge and a mix of these for the pilot-scale plants. The results obtained are: (i) good solids removal (38-90% and 40-50% in terms of VS for sludge and mix of industrial wastewater and sludge, respectively), (ii) low specific sludge production (0.01-0.09 kgVSS produced kgCOD removed-1 for industrial wastewater and 0.014-0.069 kgVSS produced kgCOD removed-1 for mix of industrial wastewater and sludge) and (iii) a significant reduction of sludge when CAS is improved with the TAMR technology.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Aguas Residuales
4.
J Environ Manage ; 269: 110714, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32560980

RESUMEN

Nowadays, sludge management represents one of the most critical challenges in the field of sewage treatment for economic and environmental impacts. Therefore, the reduction of sludge has become a major issue for the operators of municipal wastewater treatment plants. In the present paper, a new system, whose acronym is MULESL (MUch LEss SLudge), is proposed and tested at full scale for reducing the quantity of sludge in the water line of the sewage treatment plant. MULESL system takes the advantage of maintenance metabolism to significantly reduce the sludge production. The effectiveness of MULESL system in removing the typical pollutants and reducing sludge production was evaluated at full scale by using 3500 PE unit located in Putignano's WWTP (Puglia, Italy). This unit was obtained by retrofitting an existing activated sludge basin. The results obtained over 1-year period, during which MULESL unit treated the effluent of the preliminary treatment step, have indicated that it was characterized by a specific sludge production as low as 0.13 kg of dry sludge per kg of COD removed; 77% lower than that recorded for primary and secondary treatments of the conventional plant during the same period. This sludge reduction was obtained with a plant volume 27% smaller than that of the conventional water line. Furthermore, the organic matter of the sludge was already stabilized, thus allowing to save investment costs for digestion process facilities. Finally, MULESL unit guaranteed a mean removal efficiency higher than 95% for COD, BOD5, TSS, TKN, NH3 and TN.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Reactores Biológicos , Italia , Eliminación de Residuos Líquidos , Agua
5.
J Environ Manage ; 259: 109826, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32072954

RESUMEN

The integration of one anaerobic reactor in the mainstream (AMSR) of a pre-denitritication-MBR was evaluated with the aim to achieve simultaneous sludge minimization and phosphorous removal. The excess sludge production was reduced by 64% when the AMSR was operated under 8 h of hydraulic retention time (HRT). The highest nutrients removal performances referred to organic carbon (98%), nitrogen (90%) and phosphorous (97%) were obtained under 8 h of HRT. In contrast, prolonged anaerobic-endogenous conditions were found to be detrimental for all nutrients removal performances. Similarly, the lowest membrane fouling tendency (FR = 0.65∙1011 m-1 d-1) was achieved under 8 h of HRT, whereas it significantly increased under higher HRT. The highest polyphosphate accumulating organisms kinetics were achieved under HRT of 8 h, showing very high exogenous P-release (46.67 mgPO4-P gVSS-1 h-1) and P-uptake rates (48.6 mgPO4-P gVSS-1 h-1), as well as a not negligible P-release rate under endogenous conditions at low COD/P ratio (≈1).


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Membranas Artificiales , Nitrógeno , Fósforo , Eliminación de Residuos Líquidos
6.
J Environ Manage ; 206: 103-112, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29059565

RESUMEN

Applying ozone to the return flow in an activated sludge (AS) process is a way for reducing the residual solids production. To be able to extend the activated sludge models to the ozone-AS process, adequate prediction of the tri-atoms effects on the particulate COD fractions is needed. In this study, the biomass inactivation, COD mineralization, and solids dissolution were quantified in batch tests and dose-response models were developed as a function of the reacted ozone doses (ROD). Three kinds of model-sludge were used. S1 was a lab-cultivated synthetic sludge with two components (heterotrophs XH and XP). S2 was a digestate of S1 almost made by the endogenous residues, XP. S3 was from a municipal activated sludge plant. The specific ozone uptake rate (SO3UR, mgO3/gCOD.h) was determined as a tool for characterizing the reactivity of the sludges. SO3UR increased with the XH fraction and decreased with more XP. Biomass inactivation was exponential (e-ß.ROD) as a function of the ROD doses. The percentage of solids reduction was predictable through a linear model (CMiner + Ysol ROD), with a fixed part due to mineralization (CMiner) and a variable part from the solubilization process. The parameters of the models, i.e. the inactivation and the dissolution yields (ß, 0.008-0.029 (mgO3/mgCODini)-1 vs Ysol, 0.5-2.8 mg CODsol/mgO3) varied in magnitude, depending on the intensity of the scavenging reactions and potentially the compactness of the flocs for each sludge.


Asunto(s)
Ozono , Aguas del Alcantarillado , Biomasa , Eliminación de Residuos Líquidos
7.
J Environ Manage ; 162: 132-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26233586

RESUMEN

The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.


Asunto(s)
Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Diseño de Equipo , Proyectos Piloto , Aguas del Alcantarillado
8.
Water Res ; 254: 121380, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412561

RESUMEN

Minimization of excess sludge produced by wastewater treatment plants has become a topical theme nowadays. One of the most used approaches to achieve this aim is the anaerobic side-stream reactor (ASSR) process. This is considered affected by the hydraulic retention time (HRT) of the anaerobic reactor, the anaerobic sludge loading rate (ASLR) and the sludge interchange ratio (SIR), although, studies available in the literature did not reflect a clear relationship with the sludge minimization yields. To overcome this, a novel parameter namely anaerobic exposure time (AET) was defined and related to reduction of the observed yield coefficient (Yobs) in a lab-scale plant implementing the ASSR process. Furthermore, the AET was validated by performing a detailed and thorough review of previous literature. Excess sludge production was successfully reduced (10-60 %) with the increase of the AET (7.9-13 h/d), although maintaining the same HRT in the ASSR and a constant sludge interchange ratio (SIR) (100 %). A strong correlation (Pearson = 0.763) was found between the AET, and the Yobs reduction reported in previous studies, also indicating a linear relationship (R2 = 0.92) between these parameters. Contrarily, the correlation between the Yobs with the ASLR and the ASSR-HRT resulted moderate (Pearson = 0.186) or weak (Pearson=-0.346), respectively. Overall, while operating at low AET (< 6 h), maintenance and uncoupling metabolism were found the main sludge reduction mechanisms. Increasing the AET (>8 h) favoured the occurrence of extracellular polymeric substances (EPS) hydrolysis and endogenous decay mechanisms, which improved excess sludge reduction. To conclude, the AET could be considered a reliable parameter to be used for design or control purposes for the ASSR-based process.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Hidrólisis
9.
Chemosphere ; 312(Pt 1): 137090, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334748

RESUMEN

In the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered. Five periods (P1-P5) were studied, during which several operating conditions and configurations were tested. Specifically, the hydraulic retention time (HRT) in the anaerobic reactor of the OSA system (P1 8 h, P2-P3 12 h, P4 8 h, P5 12 h) and the return sludge from the anaerobic to the anoxic (scheme A) (P1-P2) or aerobic (scheme B) mainstream reactors (P3-P5) were investigated. The results highlighted that the excess sludge production in the OSA was lower in all the configurations (12-41%). In more detail, the observed yield (Yobs) was reduced from 0.50-0.89 gTSS gCOD-1 (control) to 0.22 -0.34 gTSS gCOD-1 in the OSA process. The highest excess sludge reduction (40%) was achieved when the OSA was operated according to scheme B and HRT of 12 h in the anaerobic reactor (P3). Generally, scheme A enabled the establishment of cell lysis and extracellular polymeric substances (EPS) destructuration, leading to a worsening of process performances when high anaerobic HRT (>8 h) was imposed. In contrast, scheme B enabled the establishment of maintenance metabolism in addition to the uncoupling metabolism, while cell lysis and EPS destruction were minimized. This allowed obtaining higher sludge reduction yield without compromising the effluent quality.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas
10.
Sci Total Environ ; 838(Pt 2): 156154, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35609704

RESUMEN

Due to its tremendous volume and severe environmental concern, sewage sludge (SS) management and treatment are significant in China. The recent prohibition (June 2021) of reusing SS as organic fertilizers makes it urgent to develop alternative processes. However, there is currently little research analyzing the applicability of using HP for sewage SS treatment in China. The significant difference in SS composition and the much less land supply in urban areas might invalidate most previous localized suggestions. In this paper, the development of emerging hydrothermal processes (HPs) for SS treatment will be reviewed, focusing on their decomposition mechanisms and the benefits of HPs compared with current SS treatment technologies. The SS volume, composition, and regulatory regime in China will also be evaluated. Those efforts could address the potential SS treatment capacity shortage and provide an opportunity to recover nutrients, organics and energy embedded in SS. The results show that HPs' high investment cost is mainly limited by the process scale, while their operating costs are comparable to incineration. Minimizing equipment erosion, ensuring process safety, and designing a more efficient heat recovery system are recommended for the future commercialization of HPs in China.


Asunto(s)
Incineración , Aguas del Alcantarillado , China , Estudios de Factibilidad , Fertilizantes
11.
Chemosphere ; 292: 133434, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973254

RESUMEN

The production of excess sludge by the activated sludge system of wastewater treatment plants is a problem. In this study, the EPS characteristics on production and degradation were investigated in the real-scale food processing wastewater treatment system (i.e., a micro-aerobic reactor coupled with a membrane bioreactor (MAR-MBR)) with a treatment capacity of 150 t d-1, which could cater for the low production of excess sludge (i.e., 9 t·a-1; 76% moisture content). The total organic carbon concentrations in the different EPS fractions were in the following order: soluble EPS (S-EPS) < loosely bound EPS (LB-EPS) < tightly bound EPS (TB-EPS). Although the components (e.g., protein and humic acid-like substances) of each EPS fraction changed significantly throughout the MAR-MBR process owing to the low production of excess sludge, the degrees of change in S-EPS, LB-EPS, and TB-EPS were significantly different from the corresponding change in their relative molecular weights. Furthermore, the microbial community composition was beneficial for the release and degradation of EPS, and the regulation of gene functions via the MAR-MBR enhanced this process.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Membranas Artificiales
12.
Sci Total Environ ; 803: 149966, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481161

RESUMEN

Wastewater treatment plants (WWTPs) are known sources of contaminants of emerging concern (CECs) spreading into the environment, as well as, of unpleasant odors. CECs represent a potential hazard for human health and the environment being pharmaceutical or biologically active compounds and they are acquiring relevance in European directives. Similarly, the public concern about odour emissions from WWTPs is also increasing due to the decreasing distance between WWTP and residential areas. This study focuses on the effectiveness of the recently developed MULESL technology (MUch LEss SLudge; WO2019097463) in removing CECs and limiting odour emissions from WWTPs. MULESL technology has been developed for its ability to reduce up to 80% the sludge production from WWTPs. However, it is ought to evaluate if the benefits coming from sludge production reduction do not invalidate CECs removal or negatively affect odour emissions. Thus, the performances of a MULESL and a conventional WWTP (flow rate of 375 m3/d and 3600 m3/d, respectively) were compared while treating the same municipal sewage. Whereas both plants succeeded in removing the traditional gross parameters characterizing wastewaters (e.g. chemical oxygen demand, nitrogen), the MULESL was much more effective than the conventional one in terms of CECs removal for about 60% of the identified compounds showing, however, the same or lower effectiveness for about 30% and 10% of them, respectively. This result was attributed to the high sludge retention time and biomass concentration in the MULESL (enabling enrichment of slow growing microorganisms and forcing biomass to use unusual substrates, respectively), and to the biomass feature to grow in the form of biofilm and granules (favoring micropollutants absorption on biomass). Furthermore, odour impact analysis has shown that the MULESL was characterized by a much lower impact, i.e. 45% lower than that of primary and secondary treatments of the conventional WWTP.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Odorantes , Aguas del Alcantarillado , Tecnología , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
13.
Bioresour Technol ; 341: 125748, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416656

RESUMEN

An advanced operational configuration of anoxic-aerobic moving bed biofilm reactors (AMOMOX process) was experimentally demonstrated to achieve simultaneous sludge yield minimization, pollution and nitrogen removal. The AMOMOX experimentation witnessed considerable variation in process parameters while feed operation changed from synthetic wastewater to real tannery influent. The strict maintenance of operational strategies resulted prominent removal of TCOD, SCOD, ammonia nitrogen and total nitrogen higher upto 93.5%, 94.8%, 95.2% and 88.7% respectively. The nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield restriction. Here, the sludge yield (Yobs) lowering upto 0.51 gVSS/gCOD ultimately turned an overall sludge minimization of 46.8% compared with a parallel-run conventional activated sludge treatment. The observations were further supported by sophisticated instrumental imaging, thermogravimetric analysis and batch digestion test of the sludge pool. The experimental Yobs and corresponding solids retention showed consensus with the reported correlation model and, thus, a modified correlation was tested.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Biopelículas , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
14.
Membranes (Basel) ; 11(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34940478

RESUMEN

Minimizing the biological sewage sludge (BSS) produced by wastewater treatment plants (WWTPs) represents an increasingly difficult challenge. With this goal, tests on a semi-full scale Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) were carried out for 12 months. ThAlMBR was applied both on thickened (TBSS) and digested biological sewage sludge (DBSS) with alternating aeration conditions, and emerged: (i) high COD removal yields (up to 90%), (ii) a low specific sludge production (0.02-0.05 kgVS produced/kgCODremoved), (iii) the possibility of recovery the aqueous carbon residue (permeate) in denitrification processes, replacing purchased external carbon sources. Based on the respirometric tests, an excellent biological treatability of the permeate by the mesophilic biomass was observed and the denitrification kinetics reached with the diluted permeate ((4.0 mgN-NO3-/(gVSS h)) were found comparable to those of methanol (4.4 mgN-NO3-/(gVSS h)). Moreover, thanks to the similar results obtained on TBSS and DBSS, ThAlMBR proved to be compatible with diverse sludge line points, ensuring in both cases an important sludge minimization.

15.
Bioresour Technol ; 300: 122679, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31901778

RESUMEN

This study investigated the chance to couple the conventional Oxic Settling Anaerobic (OSA) process with a thermic treatment at moderate temperature (35 °C). The maximum excess sludge reduction rate (80%) was achieved when the plant was operated under 3 h of hydraulic retention time (HRT). Compared with the conventional OSA system, the thermic treatment enabled a further improvement in excess sludge minimization of 35%. The observed yield coefficient decreased from 0.25 gTSS gCOD-1 to 0.10 gTSS gCOD-1 when the temperature in the anaerobic reactor was increased to 35 °C, despite the lower HRT (3 h vs 6 h). Moreover, the thermic treatment enabled the decrease of filamentous bacteria, thereby improving the sludge settling properties. The thermic treatment enhanced the destruction of extracellular polymeric substances and the increase of endogenous decay rate (from 0.64 d-1 to 1.16 d-1) that reduced the biomass active fraction (from 22% to 4%).


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Biomasa , Reactores Biológicos , Temperatura
16.
Water Res ; 179: 115914, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413614

RESUMEN

Iron sulphides, mainly in the form of mackinawite (FeS), pyrrhotite (Fe1-xS, x = 0-0.125) and pyrite (FeS2), are the most abundant sulphide minerals and can be oxidized under anoxic and circumneutral pH conditions by chemoautotrophic denitrifying bacteria to reduce nitrate to N2. Iron sulphides mediated autotrophic denitrification (ISAD) represents an important natural attenuation process of nitrate pollution and plays a pivotal role in linking nitrogen, sulphur and iron cycles in a variety of anoxic environments. Recently, it has emerged as a promising bioprocess for nutrient removal from various organic-deficient water and wastewater, due to its specific advantages including high denitrification capacity, simultaneous nitrogen and phosphorus removal, self-buffering properties, and fewer by-products generation (sulphate, waste sludge, N2O, NH4+, etc.). This paper provides a critical overview of fundamental and engineering aspects of ISAD, including the theoretical knowledge (biochemistry, and microbial diversity), its natural occurrence and engineering applications. Its potential and limitations are elucidated by summarizing the key influencing factors including availability of iron sulphides, low denitrification rates, sulphate emission and leaching heavy metals. This review also put forward two key questions in the mechanism of anoxic iron sulphides oxidation, i.e. dissolution of iron sulphides and direct substrates for denitrifiers. Finally, its prospects for future sustainable wastewater treatment are highlighted. An iron sulphides-based biotechnology towards next-generation wastewater treatment (NEO-GREEN) is proposed, which can potentially harness bioenergy in wastewater, incorporate resources (P and Fe) recovery, achieve simultaneous nutrient and emerging contaminants removal, and minimize waste sludge production.


Asunto(s)
Desnitrificación , Aguas Residuales , Procesos Autotróficos , Reactores Biológicos , Compuestos Ferrosos , Hierro , Nitratos , Nitrógeno , Sulfuros , Eliminación de Residuos Líquidos
17.
Sci Total Environ ; 678: 559-564, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078846

RESUMEN

The high energy consumption and excessive waste activated sludge (WAS) production have become the major concerns on the municipal wastewater treatment with conventional biological processes. To tackle these emerging issues, this study demonstrated the feasibility of a novel process integrating an upflow anaerobic fixed-bed reactor (UAFBR) followed by a continuous step-feed reactor for mainstream deammonification towards improved energy efficiency, minimized sludge production and cost-effective ammonium removal. The results showed that 48.8% of the influent chemical oxygen demand (COD) was directly converted to methane gas in UAFBR with minimized sludge production, while 80% of total nitrogen (TN) was removed in the step-feed reactor. Mass balance on the step-feed reactor revealed that the oxic chambers contributed 51.6% of the removed ammonium oxidation to mainly nitrite, while the produced nitrite was immediately removed via anammox with the ammonium supplied by the step-feed in the following anoxic chambers where about 87.1% TN removal occurred. Moreover, it was found that sustainable repression of nitrite oxidizing bacteria (NOB) was achieved without compromising the activity of ammonia oxidizing bacteria (AOB). The anammox bacteria were effectively retained in the anoxic chambers and showed a high specific anammox activity of 0.42 g N/(g VSS·day). These suggest that the step-feed configuration can offer a feasible engineering option towards single-stage mainstream deammonification. It appears that the integrated process developed in this study sheds light on the possible way towards sustainable, energy self-sufficient municipal wastewater reclamation.


Asunto(s)
Compuestos de Amonio/análisis , Bacterias/metabolismo , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Anaerobiosis , Reactores Biológicos , Tecnología Química Verde
18.
Bioresour Technol ; 257: 7-16, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29477663

RESUMEN

Sludge reduction based on regulating substrate allocation between catabolism and anabolism as a strategy is proposed to reduce energy and chemicals consumption during wastewater treatment. The results indicated that a sludge reduction of 14.8% and excellent nutrient removal were simultaneously achieved in the low dissolved oxygen (LDO) activated sludge system with a hydraulic retention time of 24 h at 25 °C. Denitrifiers comprised nearly 1/4 of all microorganisms in the system. These denitrifiers converted NOx- to N2 obtaining a lower biomass yield. The oxidoreductase activity proteins in the LDO sample was more than twice that of the normal DO sample, indicating that catabolism was stimulated by NOx- when replacing O2 as electron acceptor. Less substrate was used for cell synthesis in the LDO system. Stable sludge reduction without extra energy and chemicals inputs was achieved by regulating the substrate allocation by inducing the bacteria to utilize NOx- instead of O2.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Electrones , Nitritos , Oxígeno , Eliminación de Residuos Líquidos
19.
Environ Sci Pollut Res Int ; 24(3): 2316-2325, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27815847

RESUMEN

Foam formation in the excess sludge treatment facilities of biological wastewater treatment plants (WWTPs) may represent a critical issue as it could lead to several operative problems and reduce the overall plant performance. This trouble also affects a novel technology recently proposed for sludge minimization, the thermophilic membrane reactor (TMR), operating with alternate aeration/non-aeration cycles. This technology, which has proven to be extremely resilient and suitable for treating industrial wastewater of different nature, demonstrated a high potential also as a solution for integrating existing WWTPs, aiming at the "zero sludge production." In this work, an experimental study was conducted with a TMR pilot plant (fed daily with thickened sewage sludge) by adjusting the duration of aeration/non-aeration alternate cycles. Extracellular polymeric substance (EPS) concentration (and its soluble and bound fractions) has been monitored along with foaming power indices. The results highlight that foaming can be correlated to the presence of soluble protein fraction of EPS. Moreover, EPS production seems to be reduced by increasing the duration of the non-aeration cycles: optimal operating conditions resulted 2 h of aeration followed by 6 h of non-aeration. These conditions allow to obtain an EPS concentration of 500 mg L-1 with respect to 2300 mg L-1 measured at the beginning of experimental work.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Polímeros , Aguas Residuales
20.
Water Res ; 100: 496-507, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27232994

RESUMEN

Recently, the Sulfate reduction Autotrophic denitrification Nitrification Integrated (SANI(®)) process was developed for the removal of organics and nitrogen with sludge minimization in the treatment of saline sewage (with a Sulfate-to-COD ratio > 0.5 mg SO4(2-)-S/mg COD) generated from seawater used for toilet flushing or salt water intrusion. Previously investigated in lab- and pilot-scale, this process has now been scaled up to a 800-1000 m(3)/d full-scale demonstration plant. In this paper, the design and operating parameters of the SANI demo plant built in Hong Kong are analyzed. After a 4-month start-up period, a stable sulfur cycle-based biological nitrogen removal system having a hydraulic retention time (HRT) of 12.5 h was developed, thereby reducing the amount of space needed by 30-40% compared with conventional activated sludge (CAS) plants in Hong Kong. The demo plant satisfactorily met the local effluent discharge limits during both the summer and winter periods. In winter (sewage temperature of 21 ± 1 °C), the maximum volumetric loading rates for organic conversion, nitrification, and denitrification were 2 kg COD/(m(3)·d), 0.39 kg N/(m(3)·d), and 0.35 kg N/(m(3)·d), respectively. The biological sludge production rate of SANI process was 0.35 ± 0.08 g TSSproduced/g BOD5 (or 0.19 ± 0.05 g TSS/g COD), which is 60-70% lower than that of the CAS process in Hong Kong. While further process optimization is possible, this study demonstrates the SANI process can be potentially implemented for the treatment of saline sewage.


Asunto(s)
Desnitrificación , Nitrificación , Procesos Autotróficos , Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Sulfatos , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda