Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730849

RESUMEN

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Streptophyta/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Dominios Proteicos , Streptophyta/clasificación , Simbiosis/genética , Sintenía/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38334269

RESUMEN

A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).


Asunto(s)
Paenibacillus , Presbytini , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Suelo , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , China , Ecosistema
3.
Environ Sci Technol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066708

RESUMEN

Rising global populations have amplified food scarcity and ushered in the development of genetically modified (GM) crops containing small interference RNAs (siRNAs) that control gene expression to overcome these challenges. The use of RNA interference (RNAi) in agriculture remains controversial due to uncertainty regarding the unintended release of genetic material and downstream nontarget effects, which have not been assessed in environmental bacteria to date. To evaluate the impacts of siRNAs used in agriculture on environmental bacteria, this study assessed microbial growth and viability as well as transcription activity with and without the presence of environmental stressors. Results showed a statistically significant reduction in growth capacity and maximum biomass achieved when bacteria are exposed to siRNAs alone and with additional external stress (p < 0.05). Further transcriptomic analysis demonstrated that nutrient cycling gene activities were found to be consistently and significantly altered following siRNA exposure, particularly among carbon (xylA, FBPase, limEH, Chitinase, rgl, rgh, rgaE, mannanase, ara) and nitrogen (ureC, nasA, narB, narG, nirK) cycling genes (p < 0.05). Decreases in carbon cycling gene transcription profiles were generally significantly enhanced when siRNA exposure was coupled with nutrient or antimicrobial stress. Collectively, findings suggest that certain conditions facilitate the uptake of siRNAs from their surrounding environments that can negatively affect bacterial growth and gene expression activity, with uncertain downstream impacts on ecosystem homeostasis.

4.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346247

RESUMEN

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Asunto(s)
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradación Ambiental , Agar , Glicerol , Asparagina , Hidrocarburos/metabolismo , Petróleo/metabolismo , Carbono , Tensoactivos/química
5.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338664

RESUMEN

Irrigation and fertilization are essential management practices for increasing forest productivity. They also impact the soil ecosystem and the microbial population. In order to examine the soil bacterial community composition and structure in response to irrigation and fertilization in a Eucalyptus plantations, a total of 20 soil samples collected from Eucalyptus plantations were analyzed using high-throughput sequencing. Experimental treatments consisting of control (CK, no irrigation or fertilization), fertilization only (F), irrigation only (W), and irrigation and fertilization (WF). The results showed a positive correlation between soil enzyme activities (urease, cellulase, and chitinase) and fertilization treatments. These enzyme activities were also significantly correlated with the diversity of soil bacterial communities in Eucalyptus plantations.. Bacteria diversity was considerably increased under irrigation and fertilization (W, F, and WF) treatments when compared with the CK treatment. Additionally, the soil bacterial richness was increased in the Eucalyptus plantations soil under irrigation (W and WF) treatments. The Acidobacteria (38.92-47.9%), Proteobacteria (20.50-28.30%), and Chloroflexi (13.88-15.55%) were the predominant phyla found in the Eucalyptus plantations soil. Specifically, compared to the CK treatment, the relative abundance of Proteobacteria was considerably higher under the W, F, and WF treatments, while the relative abundance of Acidobacteria was considerably lower. The contents of total phosphorus, accessible potassium, and organic carbon in the soil were all positively associated with fertilization and irrigation treatments. Under the WF treatment, the abundance of bacteria associated with nitrogen and carbon metabolisms, enzyme activity, and soil nutrient contents showed an increase, indicating the positive impact of irrigation and fertilization on Eucalyptus plantations production. Collectively, these findings provide the scientific and managerial bases for improving the productivity of Eucalyptus plantations.


Asunto(s)
Eucalyptus , Suelo , Suelo/química , Ecosistema , Bacterias , Proteobacteria , Acidobacteria , Carbono , Fertilización , Microbiología del Suelo
6.
New Phytol ; 238(1): 393-404, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36647239

RESUMEN

Plant-soil feedbacks (PSFs) are an important mechanism of species coexistence in forest communities. However, evidence remains limited for how light availability regulates PSFs in species with different shade tolerance via changes in plant-microbial interactions. Here we tested in a glasshouse experiment how PSFs changed as a function of light availability and tree shade tolerance. Soil bacterial and fungal communities were profiled using the 16S rRNA and ITS2 gene sequencing, respectively. Under low light, individual PSFs were positively related to shade tolerance, while the least shade-tolerant species produced the most positive PSFs under high light. Pairwise PSFs between species with contrasting shade tolerance were strongly positive under high light but negative under low light, thereby promoting the dominance of less shade-tolerant species in forest gaps and species coexistence under closed canopy, respectively. Under high light, PSFs were related to soil microbial composition and diversity, with the relative abundance of arbuscular mycorrhizal fungi being the primary driver of PSFs. Under low light, none of soil microbial properties were significantly related to PSFs. These findings indicate PSFs and plant shade tolerance interact to promote species coexistence and improve our understanding of how soil microbes contribute to variation in PSFs.


Asunto(s)
Micorrizas , Árboles , Árboles/fisiología , Retroalimentación , ARN Ribosómico 16S , Plantas , Interacciones Microbianas , Suelo
7.
New Phytol ; 240(4): 1519-1533, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37615210

RESUMEN

Little is known about how sex differences in root zone characteristics, such as contents of allelochemicals and soil microbial composition, mediate intra- and intersexual interactions in dioecious plants. We examined the processes and mechanisms of sex-specific belowground interactions mediated by allelochemicals and soil microorganisms in Populus cathayana females and males in replicated 30-yr-old experimental stands in situ and in a series of controlled experiments. Female roots released a greater amount and more diverse phenolic allelochemicals into the soil environment, resulting in growth inhibition of the same sex neighbors and deterioration of the community of soil microorganisms. When grown with males, the growth of females was consistently enhanced, especially the root growth. Compared with female monocultures, the presence of males reduced the total phenolic accumulation in the soil, resulting in a shift from allelopathic inhibition to chemical facilitation. This association was enhanced by a favorable soil bacterial community and increased bacterial diversity, and it induced changes in the orientation of female roots. Our study highlighted a novel mechanism that enhances female performance by males through alterations in the allelochemical content and soil microbial composition. The possibility to improve productivity by chemical mediation provides novel opportunities for managing plantations of dioecious plants.


Asunto(s)
Populus , Animales , Populus/fisiología , Suelo/química , Feromonas , Plantas , Raíces de Plantas
8.
Mol Ecol ; 32(13): 3718-3732, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37000121

RESUMEN

Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial ß-diversity along vertical (0-240 cm of soil depth) and horizontal spatial dimensions (~500,000 km2 ) in the U.S. Corn Belt. With these data we tested whether the horizontal or vertical spatial variation had stronger impacts on the taxonomic (Bray-Curtis) and phylogenetic (weighted Unifrac) ß-diversity. Additionally, we assessed whether the distance-decay (horizontal dimension) was greater in the topsoil (0-30 cm) or subsoil (in each 30 cm layer from 30-240 cm) using Mantel tests. The influence of geographic distance versus edaphic variables on the bacterial communities from the different soil layers was also compared. Results indicated that the phylogenetic ß-diversity was impacted more by soil depth, while the taxonomic ß-diversity changed more between geographic locations. The distance-decay was lower in the topsoil than in all subsoil layers analysed. Moreover, some subsoil layers were influenced more by geographic distance than any edaphic variable, including pH. Although different factors affected the topsoil and subsoil biogeography, niche-based models explained the community assembly of all soil layers. This comprehensive study contributed to elucidating important aspects of soil bacterial biogeography including the major impact of soil depth on the phylogenetic ß-diversity, and the greater influence of geographic distance on subsoil than on topsoil bacterial communities in agroecosystems.


Asunto(s)
Suelo , Zea mays , Zea mays/genética , Microbiología del Suelo , ARN Ribosómico 16S/genética , Filogenia
9.
Plant Cell Environ ; 46(6): 1885-1899, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794528

RESUMEN

Plants influence numerous soil biotic factors that can alter the performance of later growing plants-defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Both plant species were grown separately establishing conspecific and heterospecific soils. In the feedback phase, we determined plant biomass, measured root exudate composition, and characterised rhizosphere microbial communities weekly (eight time points). Over time, we found a strong negative conspecific PSF on J. vulgaris in its early growth phase which changed into a neutral PSF, whereas H. lanatus exhibited a more persistent negative PSF. Root exudate diversity increased considerably over time for both plant species. Rhizosphere microbial communities were distinct in conspecific and heterospecific soils and showed strong temporal patterns. Bacterial communities converged over time. Using path models, PSF effects could be linked to the temporal dynamics of root exudate diversity, whereby shifts in rhizosphere microbial diversity contributed to temporal variation in PSF to a lesser extent. Our results highlight the importance of root exudates and rhizosphere microbial communities in driving temporal changes in the strength of PSF effects.


Asunto(s)
Microbiota , Rizosfera , Suelo , Microbiología del Suelo , Retroalimentación , Raíces de Plantas/microbiología , Plantas , Exudados y Transudados
10.
Arch Microbiol ; 205(12): 361, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902877

RESUMEN

To improve the nitrogen utilization efficiency and a series of environmental problems caused by excessive application of nitrogen fertilizer, actual agricultural production often reduced the usage ratio of nitrogen fertilizer. However, the reduction in nitrogen fertilizer not only affects the soil microenvironment but also leads to adverse effects on rice yield. Due to its unique properties, biochar can regulate soil nutrient distribution and significantly affect soil microbial community structure/functions. To further understand the effects of different levels of biochar on soil nutrient indicators, soil microorganisms and crop growth under the nitrogen-reduction condition, our experiment with four groups was set up as followed: 0%, 2.5% and 5% biochar application rates with 99 kg/hm2 nitrogen fertilizer and one control group (the actual fertilizer standard used in the field:110 kg/hm2) without no exogenous biochar supplement. The rice yield and soil nutrient indexes were observed, and the differences between groups were analyzed based on multiple comparisons. 16S ribosomal RNA and ITS sequencing were used to analyze the community structure of soil bacteria and fungi. Redundancy analysis was performed to obtain the correlation relationships between microbial community marker species, soil nutrient indexes, and rice yield. Path analysis was used to determine the mechanism by which soil nutrient indexes affect rice yield. The results showed that a higher application rate of biochar led to a significant increased trend in the soil pH, organic matter and total nitrogen content. In addition, a high concentration of biochar under nitrogen-reduction condition decreased the soil bacterial diversity but elevated the fungal diversity. Different concentrations of biochar resulted in these changes in the relative abundance of soil bacteria/fungi but did not alter the dominant species taxa. Taken together, appropriate usage for biochar under the nitrogen-reduction background could induce alteration in soil nutrient indicators, microbial communities and crop yields. These results provide a theoretical basis for exploring scientific, green and efficient fertilization strategies in the rice cultivation industry. Notably, the interaction relationship between rhizosphere microorganisms in rice and soil microbial taxa are not yet clear, so further research on its detailed effects on rice production is needed. In addition, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the physiological functions of the soil microbes could only predict the potential metabolic pathways. Therefore, the next-generation metagenome techonology might be performed to explore detailed metabolic differences and accurate taxa alteration at the "species" level.


Asunto(s)
Oryza , Suelo , Suelo/química , Nitrógeno/análisis , Fertilizantes/análisis , Bacterias/genética , Microbiología del Suelo
11.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38050797

RESUMEN

A novel bacterial strain, GSTT-20T was isolated from an infected, prosthetic endovascular graft explanted from a shepherd in London, United Kingdom. This strain was an aerobic, catalase-positive, oxidase-negative, Gram-stain-negative, motile, curved rod. It grew on blood agar, chocolate agar and MacConkey agar incubated at 37 °C in an aerobic environment after 48 h, appearing as yellow, mucoid colonies. Analysis of the complete 16S rRNA gene sequence showed closest similarity to Variovorax paradoxus with 99.6 % identity and Variovorax boronicumulans with 99.5 % identity. Phylogenetic analysis of the 16S rRNA gene sequence and phylogenomic analysis of single nucleotide polymorphisms within 1530 core genes showed GSTT-20T forms a distinct lineage in the genus Variovorax of the family Comamonadaceae. In silico DNA-DNA hybridization assays against GSTT-20T were estimated at 32.1 % for V. boronicumulans and 31.9 % for V. paradoxus. Genome similarity based on average nucleotide identity was 87.50 % when comparing GSTT-20T to V. paradoxus. Based on these results, the strain represented a novel species for which the name Variovorax durovernensis sp. nov. was proposed. The type strain is GSTT-20T (NCTC 14621T=CECT 30390T).


Asunto(s)
Comamonadaceae , Ácidos Grasos , Humanos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Agar , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Fosfolípidos/análisis
12.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37889152

RESUMEN

16S rRNA sequence types associated with the candidate family env.OPS 17 have been reported from various environments, but no representatives have been characterized and validly named. Bacteria of env.OPS 17 are affiliated with the order Sphingobacteriales and were first detected more than two decades ago in the vicinity of a thermal spring in Yellowstone National Park. Strain Swamp196T, isolated from the soil surrounding a swamp in Northern Germany, is the first characterized representative of candidate family env.OPS 17. Cells of strain Swamp196T are rod-shaped, non-motile, non-spore-forming, non-capsulated and stain Gram-negative. Colonies are small and orange-coloured. The strain is mesophilic and grows under aerobic or microaerophilic conditions. It grows chemo-organotrophically over a narrow range of pH and exclusively on proteinaceous substrates. The major cellular fatty acids are iso-C15 : 0, iso-C15 : 1 ω10c, C18 : 1 ω9c and C16 : 1 ω7c and the major polar lipids are two unidentified aminophospholipids, one unidentified aminolipid and one unidentified lipid. The predominant respiratory quinone is MK-7. The DNA G+C content of genomic DNA is 35.5 mol%. Strain Swamp196T is related to Pedobacter cryophilus AR-3-17T, Arcticibacter pallidicorallinus Hh36T and Pedobacter daechungensis Dae 13T with 16S rRNA gene sequence similarity of 84.1, 83.8 and 83.5 %, respectively. Based on our phenotypic, genomic and phylogenetic analysis, we propose the novel species Aurantibacillus circumpalustris sp. nov (type strain Swamp196T=DSM 105849T=CECT 30420T) of the novel genus Aurantibacillus gen. nov. and the novel family Aurantibacillaceae fam. nov.


Asunto(s)
Ácidos Grasos , Ubiquinona , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , Ubiquinona/química , Fosfolípidos/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-36748542

RESUMEN

An actinobacterial strain, designated A5X3R13T, was isolated from a compost soil suspension supplemented with extracellular material from a Micrococcus luteus-culture supernatant. The strain was cultured on tenfold-diluted reasoner's 2A agar. The cells were ovoid-to-rod shaped, non-motile, Gram-stain-positive, oxidase-negative, catalase-positive and had a width of 0.5 µm and a length of 0.8-1.2 µm. The results of both 16S rRNA-based phylogenetic and whole-genome analyses indicate that A5X3R13T forms a distinct lineage within the family Nocardioidaceae (order Propionibacteriales). On the basis of the 16S rRNA gene sequence, A5X3R13T was closely related to Aeromicrobium terrae CC-CFT486T (96.2 %), Nocardioides iriomotensis IR27-S3T (96.2 %), Nocardioides guangzhouensis 130T (95.6 %), Marmoricola caldifontis YIM 730233T (95.5 %), Aeromicrobium alkaliterrae KSL-107T (95.4 %), Aeromicrobium choanae 9H-4T (95.4 %), Aeromicrobium panaciterrae Gsoil 161T (95.3 %), and Nocardioides jensenii NBRC 14755T (95.2 %). The genome had a length of 4 915 757 bp, and its DNA G+C content was 68.5 mol %. The main fatty acids were 10-methyl C17 : 0, C16 : 0, C15 : 0, C18 : 0, C17 : 0 and iso-C16 : 0. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. MK-9(H4) was the predominant respiratory quinone. The peptidoglycan type was A3γ (A41.1) and contained alanine, glycine, glutamic acid and ll-diaminopimelic acid in a molar ratio of 1.2 : 0.9 : 1.0 : 0.8. On the basis of the results of the phylogenetic and phenotypic analyses and comparisons with other members of the family Nocardioidaceae, strain A5X3R13T is proposed to represent a novel species within a novel genus, for which the name Solicola gregarius gen. nov., sp. nov. is proposed. The type strain is A5X3R13T (=DSM 112953T=NCCB 100840T).


Asunto(s)
Actinomycetales , Ácidos Grasos , Ácidos Grasos/química , Micrococcus luteus , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis , Microbiología del Suelo
14.
Artículo en Inglés | MEDLINE | ID: mdl-37768182

RESUMEN

A novel bacterial species is described that was isolated from the soil of Norrbyskär island (Sweden). This Gram-negative, facultatively anaerobic and motile rod, designated 17-6T, was classified in the family Chromobacteriaceae, class Betaproteobacteria, and further characterized by a polyphasic approach. Comparative 16S rRNA gene analysis revealed the potential species novelty of the strain, with Silvimonas terrae (98.20 % similarity) and Silvimonas amylolytica (98.13 %) being its closest type strains. The phylogenetic novelty of the isolate at the level of species was confirmed using phylogenetic analyses based on the whole genome: average nucleotide identity values ranged from 79 to 81 %, average amino acid identity values from 75 to 81 % and percentage of conserved proteins values from 69-81 % with the members of genera Silvimonas and Amantichitinum. On the basis of phenotypic, phylogenetic, functional and genotypic analyses, we propose the isolate as the type strain of a novel species within the genus Silvimonas with the designation Silvimonas soli 17-6T (=DSM 115342T=CCM 9308T).


Asunto(s)
Betaproteobacteria , Ácidos Grasos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Suelo , Suecia , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Microbiología del Suelo
15.
Microb Cell Fact ; 22(1): 141, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528448

RESUMEN

BACKGROUND AND AIM: The purpose of the current study is to isolate a heavily amylase-producing bacteria of the genus Bacillus from soil samples, optimize the production of the enzyme, purify it, and evaluate its activity against biofilm-producing bacteria. A total of 12 soil samples were collected and screened for promising Bacillus species with good amylolytic activity. Isolation was done by serial dilution and plating technique and amylolytic activity was determined by starch agar plate method. Among the 12 Bacillus isolates recovered from soil samples, 7 showed positive α-amylase production. The best isolate that recorded the greatest amylolytic activity was selected for further studies. This isolate was identified by 16S rRNA sequencing as Bacillus cereus and registered under gene bank accession number OP811897. Furthermore, the α-amylase enzyme was produced by a submerged fermentation technique using best production media and partially purified by ammonium sulfate and chilled ethanol and molecular weight had been determined by SDS-PAGE gel electrophoresis. The production of α-amylase was optimized experimentally by one-factor at a time protocol and statistically by Plackett-Burman design as well as RSM CCD design. Data obtained from OFAT and CCD revealed that α-amylase activities were 1.5- and twofold respectively higher as compared to un-optimized conditions. The most significant factors had been identified and optimized by CCD design. RESULTS: Among the eleven independent variables tested by PBD, glucose, peptone, (NH4)2SO4, and Mg SO4 were the most significant parameters for α-amylase production with an actual yield of 250U/ml. The best physical parameters affecting the enzyme production were incubation time at 35 °C, and pH 5.5 for 48 h. The partially purified enzyme with 60% ammonium sulphate saturation with 1.38- fold purification showed good stability characteristics at a storage temperature of 4 °C and pH up to 8.5 for 21 days. Antibiofilm activity of purified α-amylase was determined against Pseudomonas aeruginosa (ATCC 35659) by spectrophotometric analysis and CLSM microscopic analysis. Results demonstrated biofilm inhibition by 84% of the formed Pseudomonas biofilm using a microtiter plate assay and thickness inhibition activity by 83% with live/Dead cells percentage of 17%/83% using CLSM protocol. CONCLUSIONS: A highly stable purified α-amylase from B. cereus showed promising antibiofilm activity against one of the clinically important biofilm-forming MDR organisms that could be used as a cost-effective tool in pharmaceutical industries.


Asunto(s)
Bacillus , alfa-Amilasas , alfa-Amilasas/química , Bacillus cereus , Pseudomonas aeruginosa , ARN Ribosómico 16S/genética , Concentración de Iones de Hidrógeno , Temperatura , Biopelículas , Suelo
16.
Microb Ecol ; 87(1): 17, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110747

RESUMEN

Changes in land use strongly affect soil biological and physico-chemical structure and characteristics, which are strongly related to agricultural conversion of natural habitats to man-made usage. These are among the most important and not always beneficial changes, affecting loss of habitats. In Golan Heights basaltic soils, vineyards are currently a driving force in land-use change. Such changes could have an important effect on soil microbial community that play an important role in maintaining stable functioning of soil ecosystems. This study investigated the microbial communities in five different agro-managements using molecular tools that can clarify the differences in microbial community structure and function. Significant differences in soil microbial community composition were found. However, no differences in alpha diversity or functionality were found between the treatments. To the best of our knowledge, this is the first report indicating that the bacterial community in different agro-managements provide an insight into the potential function of a vineyard system.


Asunto(s)
Microbiota , Suelo , Humanos , Suelo/química , Granjas , Microbiología del Suelo , Agricultura , Bacterias/genética
17.
Environ Sci Technol ; 57(48): 20238-20248, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976412

RESUMEN

The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.


Asunto(s)
Carbón Orgánico , Suelo , Radicales Libres/química , Carbón Orgánico/química , Bacterias
18.
Appl Environ Microbiol ; 88(21): e0073222, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226960

RESUMEN

Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.


Asunto(s)
Deshidratación , Suelo , Humanos , Suelo/química , Propiedades de Superficie , Microbiología del Suelo , Sequías
19.
BMC Microbiol ; 22(1): 189, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918663

RESUMEN

Despite the known influence of continuous cropping on soil microorganisms, little is known about the associated difference in the effects of continuous cropping on the community compositions of soil bacteria and fungi. Here, we assessed soil physicochemical property, as well as bacterial and fungal compositions across different years (Uncropped control, 1, 6, 11, 16, and 21 years) and in the watermelon system of a gravel mulch field in the Loess Plateau of China. Our results showed that long-term continuous cropping led to substantial shifts in soil bacterial and fungal compositions. The relative abundances of dominant bacterial and fungal genera (average relative abundance > 1.0%) significantly varied among different continuous cropping years (P < 0.05). Structural equation models demonstrated that continuous cropping alter soil bacterial and fungal compositions mainly by causing substantial variations in soil attributes. Variations in soil pH, nutrient, salinity, and moisture content jointly explained 73% and 64% of the variation in soil bacterial and fungal compositions, respectively. Variations in soil moisture content and pH caused by continuous cropping drove the shifts in soil bacterial and fungal compositions, respectively (Mantel R = 0.74 and 0.54, P < 0.01). Furthermore, the variation in soil bacterial and fungal composition showed significant correlation with watermelon yield reduction (P < 0.01). Together, long-term continuous cropping can alter soil microbial composition, and thereby influencing watermelon yield. Our findings are useful for alleviating continuous cropping obstacles and guiding agricultural production.


Asunto(s)
Citrullus , Micobioma , Bacterias/genética , Biodiversidad , Hongos/genética , Rizosfera , Suelo/química , Microbiología del Suelo
20.
Arch Microbiol ; 204(3): 182, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179646

RESUMEN

A Gram-negative, short rod-shaped, and pink-pigmented bacterial strain, designated MA1T, was isolated from a soil sample from Gijang-gun, Busan in Republic of Korea. The 16S rRNA gene sequence analysis showed that strain MA1T belonged to the genus Larkinella and was closely related to "Larkinella punicea" (97.5% similarity), Larkinella rosea 15J16-1T3AT (96.5%), and Larkinella knui 15J6-3T6T (96.2%). Polar lipid profile of strain MA1T contained phosphatidylethanolamine, two unidentified aminolipids, and three unidentified lipids. Menaquinone-7 was the only quinone and the main fatty acids were C16:1 ω5c (36.7%), iso-C15:0 (30.0%), iso-C17:0 3-OH (7.7%), and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c and/or iso-C15:0 2-OH) (7.3%). The genomic DNA G + C content was 52.3 mol% based on the whole-genome analysis. Strain MA1T exhibited a relatively low level of ANI and in silico DDH values with "Larkinella punicea" (91.9 and 47.1%, respectively), Larkinella rosea (79.7 and 23.3%), and Larkinella knui (81.9 and 25.7%). Based on its phenotypic properties and phylogenetic distinctiveness, strain MA1T should be classified in the genus Larkinella as a representative of a novel species, for which the name Larkinella humicola sp. nov. is proposed. The type strain is MA1T (= KCTC 72629T = NBRC 114191T).


Asunto(s)
Microbiología del Suelo , Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Rayos gamma , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda