Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2202767119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914136

RESUMEN

Flash drought often leads to devastating effects in multiple sectors and presents a unique challenge for drought early warning due to its sudden onset and rapid intensification. Existing drought monitoring and early warning systems are based on various hydrometeorological variables reaching thresholds of unusually low water content. Here, we propose a flash drought early warning approach based on spaceborne measurements of solar-induced chlorophyll fluorescence (SIF), a proxy of photosynthesis that captures plant response to multiple environmental stressors. Instead of negative SIF anomalies, we focus on the subseasonal trajectory of SIF and consider slower-than-usual increase or faster-than-usual decrease of SIF as an early warning for flash drought onset. To quantify the deviation of SIF trajectory from the climatological norm, we adopt existing formulas for a rapid change index (RCI) and apply the RCI analysis to spatially downscaled 8-d SIF data from GOME-2 during 2007-2018. Using two well-known flash drought events identified by the operational US Drought Monitor (in 2012 and 2017), we show that SIF RCI can produce strong predictive signals of flash drought onset with a lead time of 2 wk to 2 mo and can also predict drought recovery with several weeks of lead time. While SIF RCI shows great early warning potential, its magnitude diminishes after drought onset and therefore cannot reflect the current drought intensity. With its long lead time and direct relevance for agriculture, SIF RCI can support a global early warning system for flash drought and is especially useful over regions with sparse hydrometeorological data.


Asunto(s)
Clorofila , Sequías , Fluorescencia , Predicción , Clorofila/química , Clorofila/metabolismo , Clorofila/efectos de la radiación , Predicción/métodos , Hidrología , Meteorología , Fotosíntesis , Luz Solar , Estados Unidos
2.
J Environ Manage ; 359: 121069, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714034

RESUMEN

The traditional classification of drought events into seasonal and flash types oversimplified the complexity and variability of global drought phenomena, limiting a deeper understanding of drought characteristics and their impacts on vegetation. To address this issue, soil moisture percentile methods and the Soil Moisture Anomaly Percentage Index (SMAPI) were employed to create time series for flash drought (FD) and seasonal drought (SD) events globally from 1981 to 2020. A novel categorization framework was proposed to subdivide the two basic drought categories into eight distinct drought types using a set relationship identification method. The results showed fluctuating trends in the frequencies of Independent FD and Inclusion FD, which declined rapidly after 2011 at rates of 0.05 and 0.04 times/year, respectively. Independent FD frequency was highest in humid areas and decreased with increasing aridity. The spatial distributions of Inclusion FD and SD were similar, with both frequencies highest in extremely arid areas and decreasing with increasing humidity. The frequency of Independent SD, which peaked in semi-arid areas, increased significantly after 2011 at a rate of 0.01 times/year. The occurrence of FD evolving into SD or emerging at the end of SD was rare, with a global average of 0.46 events/decade and little spatial variation. Between 1981 and 2020, FD showed a U-shaped trend in drought duration, while SD showed no clear pattern. The duration of FD showed little difference across arid and humid zones, but the duration of SD decreased significantly with increasing humidity. Vegetation responses to drought varied, with arid regions showing longer response time compared to humid regions. A positive correlation between temperature and solar-induced chlorophyll fluorescence (SIF) during droughts was observed, while precipitation generally showed a negative correlation with SIF. Radiation had a minimal effect on SIF during droughts. The study offered a comprehensive categorization of drought events, enhancing our understanding of their spatiotemporal characteristics and vegetation responses on a global scale.


Asunto(s)
Sequías , Estaciones del Año , Suelo , Plantas
3.
Environ Monit Assess ; 196(7): 597, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842642

RESUMEN

Photosynthesis in vegetation is one of the key processes in maintaining regional ecological balance and climate stability, and it is of significant importance for understanding the health of regional ecosystems and addressing climate change. Based on 2001-2021 Global OCO-2 Solar-Induced Fluorescence (GOSIF) dataset, this study analyzed spatiotemporal variations in Asian vegetation photosynthesis and its response to climate and human activities. Results show the following: (1) From 2001 to 2021, the overall photosynthetic activity of vegetation in the Asian region has shown an upward trend, exhibiting a stable distribution pattern with higher values in the eastern and southern regions and lower values in the central, western, and northern regions. In specific regions such as the Turgen Plateau in northwestern Kazakhstan, Cambodia, Laos, and northeastern Syria, photosynthesis significantly declined. (2) Meteorological factors influencing photosynthesis exhibit differences based on latitude and vertical zones. In low-latitude regions, temperature is the primary driver, while in mid-latitude areas, solar radiation and precipitation are crucial. High-latitude regions are primarily influenced by temperature, and high-altitude areas depend on precipitation and solar radiation. (3) Human activities (56.44%) have a slightly greater impact on the dynamics of Asian vegetation photosynthesis compared to climate change (43.56%). This research deepens our comprehension of the mechanisms behind the fluctuations in Asian vegetation photosynthesis, offering valuable perspectives for initiatives in environmental conservation, sustainability, and climate research.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Fotosíntesis , Imágenes Satelitales , Monitoreo del Ambiente/métodos , Asia , Ecosistema , Plantas
4.
Glob Chang Biol ; 29(17): 4811-4825, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37401204

RESUMEN

Tropical forests play a pivotal role in regulating the global carbon cycle. However, the response of these forests to changes in absorbed solar energy and water supply under the changing climate is highly uncertain. Three-year (2018-2021) spaceborne high-resolution measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) provide a new opportunity to study the response of gross primary production (GPP) and more broadly tropical forest carbon dynamics to differences in climate. SIF has been shown to be a good proxy for GPP on monthly and regional scales. Combining tropical climate reanalysis records and other contemporary satellite products, we find that on the seasonal timescale, the dependence of GPP on climate variables is highly heterogeneous. Following the principal component analyses and correlation comparisons, two regimes are identified: water limited and energy limited. GPP variations over tropical Africa are more correlated with water-related factors such as vapor pressure deficit (VPD) and soil moisture, while in tropical Southeast Asia, GPP is more correlated with energy-related factors such as photosynthetically active radiation (PAR) and surface temperature. Amazonia is itself heterogeneous: with an energy-limited regime in the north and water-limited regime in the south. The correlations of GPP with climate variables are supported by other observation-based products, such as Orbiting Carbon Observatory-2 (OCO2) SIF and FluxSat GPP. In each tropical continent, the coupling between SIF and VPD increases with the mean VPD. Even on the interannual timescale, the correlation of GPP with VPD is still discernable, but the sensitivity is smaller than the intra-annual correlation. By and large, the dynamic global vegetation models in the TRENDY v8 project do not capture the high GPP seasonal sensitivity to VPD in dry tropics. The complex interactions between carbon and water cycles in the tropics illustrated in this study and the poor representation of this coupling in the current suite of vegetation models suggest that projections of future changes in carbon dynamics based on these models may not be robust.

5.
Glob Chang Biol ; 29(16): 4543-4555, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37198735

RESUMEN

Shifts in plant phenology regulate ecosystem structure and function, which feeds back to the climate system. However, drivers for the peak of growing season (POS) in seasonal dynamics of terrestrial ecosystems remain unclear. Here, spatial-temporal patterns of POS dynamics were analyzed by solar-induced chlorophyll fluorescence (SIF) and vegetation index in the Northern Hemisphere over the past two decades from 2001 to 2020. Overall, a slow advanced POS was observed in the Northern Hemisphere, while a delayed POS distributed mainly in northeastern North America. Trends of POS were driven by the start of growing season (SOS) rather than pre-POS climate both at hemisphere and biome scale. The effect of SOS on the trends in POS was the strongest in shrublands while the weakest in evergreen broad-leaved forest. These findings highlight the crucial role of biological rhythms rather than climatic factors in exploring seasonal carbon dynamics and global carbon balance.


Asunto(s)
Clima , Ecosistema , Estaciones del Año , Bosques , Cambio Climático , Carbono
6.
Ecol Appl ; 33(2): e2757, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36193869

RESUMEN

The desertification reversal is a process of revegetation and natural restoration in fragile dryland areas due to human activities and climate change mediation. Understanding the impact of desertification reversion on terrestrial ecosystems, including vegetation greenness and photosynthetic capacity, is crucial for land policy-making and carbon-cycle model improvement. However, the phenomenon of desertification reversal is rarely mentioned in previous studies, which dramatically limits the understanding of vegetation dynamics in the arid area. Therefore, it is of great necessity to investigate the status of desertification reversal on the ecosystem in arid areas. In this study, we first reported the phenomenon of desertification reversion over the southern edge of the Gurbantunggut Desert through the Moderate-resolution Imaging Spectroradiometer classification map year by year. We discussed the consequences, ways, and causes of desertification reversion. Our results showed that the desertification reversal significantly increased vegetation greenness and photosynthetic capacity, which largely offset the negative impact of desertification on the ecosystem productivity; cropland expansion and grassland's natural restoration were the two main ways of desertification reversal; the improvement of soil-water condition was an essential environmental factor leading to the phenomenon of reverse desertification. This finding highlights the importance of desertification reversal in the carbon cycle of dryland ecosystems and prove that desertification reversal is an integral part of global and dryland vegetation greening.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Fluorescencia , Clima Desértico , Clorofila , China
7.
Environ Res ; 239(Pt 1): 117364, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827373

RESUMEN

Comparing with the effect of the average climate change on vegetation phenology, the impacts of extreme climate events remain unclear, especially considering their characteristic cumulative and time-lag effects. Using solar-induced chlorophyll fluorescence (SIF) satellite records, we investigated the cumulative and time-lag effects of drought and heat events on photosynthesis, particularly for the end date of autumn photosynthesis (EOP), in subtropical vegetation in China. Our results showed a negative effect of drought on the delay of EOP, with the cumulative effect on 30.12% (maximum continuous dry days, CDD), 34.82% (dry days, DRD), and 26.14% (dry period, DSDI) of the study area and the general time-lag effect on 50.73% (maximum continuous dry days), 56.61% (dry days), and 47.55% (dry period) of the study area. The cumulative and lagged time were 1-3 months and 2-3 months, respectively. In contrast, the cumulative effect of heat on EOP was observed in 16.27% (warm nights, TN90P), 23.66% (moderate heat days, TX50P), and 19.19% (heavy heat days, TX90P) of the study area, with cumulative time of 1-3 months. The lagged time was 3-4 months, detected in 31.02% (warm nights), 45.86% (moderate heat days), and 36.52% (heavy heat days) of the study area. At the vegetation community level, drought and heat had relatively rapid impacts on EOP in the deciduous broadleaved forest, whereas evergreen forests and bushes responded to heat slowly and took a longer time. Our results revealed that drought and heat have short-term cumulative and time-lag effects on the EOP of subtropical vegetation in China, with varying effects among different vegetation types. These findings provide new insights into the effect of drought and heat on subtropical vegetation and confirm the need to consider these effects in the development of prediction models of autumn phenology for subtropical vegetation.


Asunto(s)
Sequías , Calor , Fotosíntesis , Bosques , Luz Solar , Estaciones del Año , China , Ecosistema , Cambio Climático
8.
New Phytol ; 234(4): 1206-1219, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181903

RESUMEN

Solar-induced Chl fluorescence (SIF) offers the potential to curb large uncertainties in the estimation of photosynthesis across biomes and climates, and at different spatiotemporal scales. However, it remains unclear how SIF should be used to mechanistically estimate photosynthesis. In this study, we built a quantitative framework for the estimation of photosynthesis, based on a mechanistic light reaction model with the Chla fluorescence of Photosystem II (SIFPSII ) as an input (MLR-SIF). Utilizing 29 C3 and C4 plant species that are representative of major plant biomes across the globe, we confirmed the validity of this framework at the leaf level. The MLR-SIF model is capable of accurately reproducing photosynthesis for all C3 and C4 species under diverse light, temperature, and CO2 conditions. We further tested the robustness of the MLR-SIF model using Monte Carlo simulations, and found that photosynthesis estimates were much less sensitive to parameter uncertainties relative to the conventional Farquhar, von Caemmerer, Berry (FvCB) model because of the additional independent information contained in SIFPSII . Once inferred from direct observables of SIF, SIFPSII provides 'parameter savings' to the MLR-SIF model, compared to the mechanistically equivalent FvCB model, and thus avoids the uncertainties arising as a result of imperfect model parameterization. Our findings set the stage for future efforts to employ SIF mechanistically to improve photosynthesis estimates across a variety of scales, functional groups, and environmental conditions.


Asunto(s)
Clorofila , Fotosíntesis , Ecosistema , Fluorescencia , Fotosíntesis/fisiología , Hojas de la Planta/fisiología
9.
Plant Cell Environ ; 45(4): 1298-1314, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35098552

RESUMEN

Solar-induced chlorophyll fluorescence (SIF) has been used to infer photosynthetic capacity parameters (e.g., the maximum carboxylation rate Vcmax , and the maximum electron transport rate Jmax ). However, the precise mechanism and practical utility of such approach under dynamic environments remain unclear. We used the balance between the light and carbon reactions to derive theoretical equations relating chlorophyll a fluorescence (ChlF) emission and photosynthetic capacity parameters, and formulated testable hypotheses regarding the dynamic relationships between the true total ChlF emitted from PSII (SIFPSII ) and Vcmax and Jmax . We employed concurrent measurements of gas exchanges and ChlF parameters for 15 species from six biomes to test the formulated hypotheses across species, temperatures, and limitation state of carboxylation. Our results revealed that SIFPSII alone is incapable of informing the variations in Vcmax and Jmax across species, even when SIFPSII is determined under the same environmental conditions. In contrast, the product of SIFPSII and the fraction of open PSII reactions qL , which indicates the redox state of PSII, is a strong predictor of both Vcmax and Jmax , although their precise relationships vary somewhat with environmental conditions. Our findings suggest the redox state of PSII strongly influences the relationship between SIFPSII and Vcmax and Jmax .


Asunto(s)
Clorofila , Hojas de la Planta , Clorofila A , Transporte de Electrón , Fluorescencia , Fotosíntesis
10.
Glob Chang Biol ; 28(6): 2066-2080, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918427

RESUMEN

The accurate assessment of the global gross primary productivity (GPP) of vegetation is the key to estimating the global carbon cycle. Temperature (Ts) and soil moisture (SM) are essential for vegetation growth. It is acknowledged that the global Ts has shown an increasing trend, yet SM has shown a decreasing trend. However, the importance of SM and Ts changes on the productivity of global ecosystems remains unclear, as SM and Ts are strongly coupled through soil-atmosphere interactions. Using solar-induced chlorophyll fluorescence (SIF) as a proxy for GPP and by decoupling SM and Ts changes, our investigation shows Ts plays a more important role in SIF in 60% of the vegetation areas. Overall, increased Ts promotes SIF by mitigating the resistance from SM's reduction. However, the importance of SM and Ts varies, given different vegetation types. The results show that in the humid zone, the variation of Ts plays a more important role in SIF, but in the arid and semi-arid zones, the variation of SM plays a more important role; in the semi-humid zone, the disparity in the importance of SM and Ts is difficult to unravel. In addition, our results suggest that SIF is very sensitive to aridity gradients in arid and semi-arid ecosystems. By decoupling the intertwined SM-Ts impact on SIF, our study provides essential evidence that benefits future investigation on the factors the influence ecosystem productivity at regional or global scales.


Asunto(s)
Ecosistema , Suelo , Clorofila , Fluorescencia , Fotosíntesis , Temperatura
11.
J Environ Manage ; 311: 114879, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303597

RESUMEN

The increase in drought frequency in recent years is considered as an important factor affecting vegetation diversity. Understanding the responses of vegetation dynamics to drought is helpful to reveal the behavioral mechanisms of terrestrial ecosystems and propose effective drought control measures. In this study, long time series of Normalized Difference Vegetation Index (NDVI) and Solar-induced chlorophyll fluorescence (SIF) were used to analyze the vegetation dynamics in the Pearl River Basin (PRB). The relationship between vegetation and meteorological drought was evaluated, and the corresponding differences among different vegetation types were revealed. Based on an improved partial wavelet coherence (PWC) analysis, the influences of teleconnection factors (i.e., large-scale climate patterns and solar activity) on the response relationship between meteorological drought and vegetation were quantitatively analyzed to determine the roles of factors. The results indicate that (a) vegetation in the PRB showed an increasing trend from 2001 to 2019, and the SIF increased more than that of NDVI; (b) the vegetation response time (VRT) based on NDVI (VRTN) was typically 4-6 months, while the VRT based on SIF (VRTS) was typically 2-4 months. The VRT was shortest in the woody savannas and longest in the evergreen broadleaf forests. (c) The relationship between the SIF and meteorological drought was more significant than that between the NDVI and meteorological drought. (d) There was a significant positive correlation between meteorological drought and vegetation in the period of 8-20 years. The El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and sunspots were important driving factors affecting the response relationship between drought and vegetation. Specifically, the PDO had the greatest impacts among these factors.

12.
J Environ Manage ; 313: 114947, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421694

RESUMEN

With global climate change, frequent flash droughts have critically impacted vegetation productivity. Based on the new definition on flash drought onset and duration, the temporal and spatial evolution patterns of the flash drought over the Hai River Basin (HRB) was analysed. Among the events, the flash drought in 2019 lasted for 40 days, from the day of the year (DOY) 120 to DOY160, which was the strongest and mainly concentrated in the south-eastern part of the basin. Solar-induced chlorophyll fluorescence (SIF) and vegetation indices were used to explore the responses of different vegetation types to this flash drought. Compared to forest and grassland, the SIF and SIFyield (SIF normalized by the absorbed photosynthetically active radiation (APAR)) values of cropland were more sensitive to water losses and replenishment. By analysing different radiation conditions which would affect SIF and photosynthesis, low radiation was found altering the linear relationship between fluorescence and photosynthesis. The flash drought event caused gross primary productivity (GPP) losses in 40% of the basin and the maximum loss reached 0.16 kg C m-2, indicating that the impact of this flash drought on vegetation productivity was quite serious. The results obtained in this work can be used to understand the mechanisms with which the vegetation photosynthetic capacity responds to flash droughts and to evaluate the impact of flash droughts on terrestrial ecosystems.


Asunto(s)
Sequías , Ecosistema , China , Clorofila , Fluorescencia , Fotosíntesis , Ríos , Estaciones del Año
13.
Glob Chang Biol ; 27(6): 1144-1156, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33002262

RESUMEN

Effective use of solar-induced chlorophyll fluorescence (SIF) to estimate and monitor gross primary production (GPP) in terrestrial ecosystems requires a comprehensive understanding and quantification of the relationship between SIF and GPP. To date, this understanding is incomplete and somewhat controversial in the literature. Here we derived the GPP/SIF ratio from multiple data sources as a diagnostic metric to explore its global-scale patterns of spatial variation and potential climatic dependence. We found that the growing season GPP/SIF ratio varied substantially across global land surfaces, with the highest ratios consistently found in boreal regions. Spatial variation in GPP/SIF was strongly modulated by climate variables. The most striking pattern was a consistent decrease in GPP/SIF from cold-and-wet climates to hot-and-dry climates. We propose that the reduction in GPP/SIF with decreasing moisture availability may be related to stomatal responses to aridity. Furthermore, we show that GPP/SIF can be empirically modeled from climate variables using a machine learning (random forest) framework, which can improve the modeling of ecosystem production and quantify its uncertainty in global terrestrial biosphere models. Our results point to the need for targeted field and experimental studies to better understand the patterns observed and to improve the modeling of the relationship between SIF and GPP over broad scales.


Asunto(s)
Clorofila , Ecosistema , Clorofila/análisis , Monitoreo del Ambiente , Fluorescencia , Fotosíntesis , Luz Solar
14.
Remote Sens Environ ; 264: 112609, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34602655

RESUMEN

Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction ( f esc ) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine f esc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy ( SIF 760 canopy ) to leaf level ( SIF 760 leaf ). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine f esc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating f esc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency ( ε SIF ) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency.

15.
Sensors (Basel) ; 21(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34300625

RESUMEN

A series of algorithms for satellite retrievals of sun-induced chlorophyll fluorescence (SIF) have been developed and applied to different sensors. However, research on SIF retrieval using hyperspectral data is performed in narrow spectral windows, assuming that SIF remains constant. In this paper, based on the singular vector decomposition (SVD) technique, we present an approach for retrieving SIF, which can be applied to remotely sensed data with ultra-high spectral resolution and in a broad spectral window without assuming that the SIF remains constant. The idea is to combine the first singular vector, the pivotal information of the non-fluorescence spectrum, with the low-frequency contribution of the atmosphere, plus a linear combination of the remaining singular vectors to express the non-fluorescence spectrum. Subject to instrument settings, the retrieval was performed within a spectral window of approximately 7 nm that contained only Fraunhofer lines. In our retrieval, hyperspectral data of the O2-A band from the first Chinese carbon dioxide observation satellite (TanSat) was used. The Bayesian Information Criterion (BIC) was introduced to self-adaptively determine the number of free parameters and reduce retrieval noise. SIF retrievals were compared with TanSat SIF and OCO-2 SIF. The results showed good consistency and rationality. A sensitivity analysis was also conducted to verify the performance of this approach. To summarize, the approach would provide more possibilities for retrieving SIF from hyperspectral data.


Asunto(s)
Clorofila , Fotosíntesis , Teorema de Bayes , Ecosistema , Fluorescencia
16.
Sensors (Basel) ; 21(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067656

RESUMEN

Space-based solar-induced chlorophyll fluorescence (SIF) has been widely demonstrated as a great proxy for monitoring terrestrial photosynthesis and has been successfully retrieved from satellite-based hyperspectral observations using a data-driven algorithm. As a semi-empirical algorithm, the data-driven algorithm is strongly affected by the empirical parameters in the model. Here, the influence of the data-driven algorithm's empirical parameters, including the polynomial order (np), the number of feature vectors (nSV), the fluorescence emission spectrum function, and the fitting window used in the retrieval model, were quantitatively investigated based on the simulations of the SIF Imaging Spectrometer (SIFIS) onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1). The results showed that the fitting window, np, and nSV were the three main factors that influenced the accuracy of retrieval. The retrieval accuracy was relatively higher for a wider fitting window; the root mean square error (RMSE) was lower than 0.7 mW m-2 sr-1 nm-1 with fitting windows wider than 735-758 nm and 682-691 nm for the far-red band and the red band, respectively. The RMSE decreased first and then increased with increases in np range from 1 to 5 and increased in nSV range from 2 to 20. According to the specifications of SIFIS onboard TECIS-1, a fitting window of 735-758 nm, a second-order polynomial, and four feature vectors are the optimal parameters for far-red SIF retrieval, resulting in an RMSE of 0.63 mW m-2 sr-1 nm-1. As for red SIF retrieval, using second-order polynomial and seven feature vectors in the fitting window of 682-697 nm was the optimal choice and resulted in an RMSE of 0.53 mW m-2 sr-1 nm-1. The optimized parameters of the data-driven algorithm can guide the retrieval of satellite-based SIF and are valuable for generating an accurate SIF product of the TECIS-1 satellite after its launch.

17.
Ecol Appl ; 30(5): e02101, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32086965

RESUMEN

Drought is among the most damaging climate extremes, potentially causing significant decline in ecosystem functioning and services at the regional to global scale, thus monitoring of drought events is critically important. Solar-induced chlorophyll fluorescence (SIF) has been found to strongly correlate with gross primary production on the global scale. Recent advances in the remote sensing of SIF allow for large-scale, real-time estimation of photosynthesis using this relationship. However, several studies have used SIF to quantify the impact of drought with mixed results, and the leaf-level mechanisms linking SIF and photosynthesis are unclear, particularly how the relationship may change under drought. We conducted a drought experiment with 2-yr old Populus deltoides. We measured leaf-level gas exchange, SIF, and pulse amplitude modulated (PAM) fluorescence before and during the 1-month drought. We found clear responses of net photosynthesis and stomatal conductance to water stress, however, SIF showed a smaller response to drought. Net photosynthesis (Anet ) and conductance dropped 94% and 95% on average over the drought, while SIF values only decreased slightly (21%). Electron transport rate dropped 64% when compared to the control over the last week of drought, but the electron transport chain did not completely shut down as Anet approached zero. Additionally, SIF yield (SIFy ) was positively correlated with steady-state fluorescence (Fs ) and negatively correlated with non-photochemical quenching (NPQ; R2  = 0.77). Both Fs and SIFy , after normalization by the minimum fluorescence from a dark-adapted sample (Fo ), showed a more pronounced drought response, although the results suggest the response is complicated by several factors. Leaf-level experiments can elucidate mechanisms behind large-scale remote sensing observations of ecosystem functioning. The value of SIF as an accurate estimator of photosynthesis may decrease during mild stress events of short duration, especially when the response is primarily stomatal and not fully coupled with the light reactions of photosynthesis. We discuss potential factors affecting the weak SIF response to drought, including upregulation of NPQ, change in internal leaf structure and chlorophyll concentration, and photorespiration. The results suggest that SIF is mainly controlled by the light reactions of photosynthesis, which operate on different timescales than the stomatal response.


Asunto(s)
Sequías , Ecosistema , Clorofila , Fluorescencia , Fotosíntesis , Hojas de la Planta
18.
Sensors (Basel) ; 20(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028694

RESUMEN

The global monitoring of solar-induced chlorophyll fluorescence (SIF) using satellite-based observations provides a new way of monitoring the status of terrestrial vegetation photosynthesis on a global scale. Several global SIF products that make use of atmospheric satellite data have been successfully developed in recent decades. The Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1), the first Chinese terrestrial ecosystem carbon inventory satellite, which is due to be launched in 2021, will carry an imaging spectrometer specifically designed for SIF monitoring. Here, we use an extensive set of simulated data derived from the MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) and Soil Canopy Observation Photosynthesis and Energy (SCOPE) models to evaluate and optimize the specifications of the SIF Imaging Spectrometer (SIFIS) onboard TECIS for accurate SIF retrievals. The wide spectral range of 670-780 nm was recommended to obtain the SIF at both the red and far-red bands. The results illustrate that the combination of a spectral resolution (SR) of 0.1 nm and a signal-to-noise ratio (SNR) of 127 performs better than an SR of 0.3 nm and SNR of 322 or an SR of 0.5 nm and SNR of 472 nm. The resulting SIF retrievals have a root-mean-squared (RMS) diff* value of 0.15 mW m-2 sr-1 nm-1 at the far-red band and 0.43 mW m-2 sr-1 nm-1 at the red band. This compares with 0.20 and 0.26 mW m-2 sr-1 nm-1 at the far-red band and 0.62 and 1.30 mW m-2 sr-1 nm-1 at the red band for the other two configurations described above. Given an SR of 0.3 nm, the increase in the SNR can also improve the SIF retrieval at both bands. If the SNR is improved to 450, the RMS diff* will be 0.17 mW m-2 sr-1 nm-1 at the far-red band and 0.47 mW m-2 sr-1 nm-1 at the red band. Therefore, the SIFIS onboard TECIS-1 will provide another set of observations dedicated to monitoring SIF at the global scale, which will benefit investigations of terrestrial vegetation photosynthesis from space.


Asunto(s)
Clorofila/química , Ecosistema , Imagen Óptica , Fotosíntesis/fisiología , Carbono/química , Monitoreo del Ambiente , Bosques , Humanos , Estaciones del Año , Luz Solar
19.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354053

RESUMEN

Solar-induced chlorophyll fluorescence (SIF) has been proven to be well correlated with vegetation photosynthesis. Although multiple studies have found that SIF demonstrates a strong correlation with gross primary production (GPP), SIF-based GPP estimation at different temporal scales has not been well explored. In this study, we aimed to investigate the quality of GPP estimates produced using the far-red SIF retrieved at 760 nm (SIF760) based on continuous tower-based observations of a maize field made during 2017 and 2018, and to explore the responses of GPP and SIF to different meteorological conditions, such as the amount of photosynthetically active radiation (PAR), the clearness index (CI, representing the weather condition), the air temperature (AT), and the vapor pressure deficit (VPD). Firstly, our results showed that the SIF760 tracked GPP well at both diurnal and seasonal scales, and that SIF760 was more linearly correlated to PAR than GPP was. Therefore, the SIF760-GPP relationship was clearly a hyperbolic relationship. For instantaneous observations made within a period of half an hour, the R2 value was 0.66 in 2017 and 2018. Based on daily mean observations, the R2 value was 0.82 and 0.76 in 2017 and 2018, respectively. and had an R2 value of 0.66 (2017) and 0.66 (2018) for instantaneous observations made within a period of half an hour and 0.82 (2017) and 0.76 (2018) for daily mean observations. Secondly, it was found that the SIF760-GPP relationship varied with the environmental conditions, with the CI being the dominant factor. At both diurnal and seasonal scales, the ratio of GPP to SIF760 decreased noticeably as the CI increased. Finally, the SIF760-based GPP models with and without the inclusion of CI were trained using 70% of daily observations from 2017 and 2018 and the models were validated using the remaining 30% of the dataset. For both linear and non-linear models, the inclusion of the CI greatly improved the SIF760-based GPP estimates based on daily mean observations: the value of R2 increased from 0.71 to 0.82 for the linear model and from 0.82 to 0.87 for the non-linear model. The validation results confirmed that the SIF760-based GPP estimation was improved greatly by including the CI, giving a higher R2 and a lower RMSE. These values improved from R2 = 0.66 and RMSE = 7.02 mw/m2/nm/sr to R2 = 0.76 and RMSE = 6.36 mw/m2/nm/sr for the linear model, and from R2 = 0.71 and RMSE = 4.76 mw/m2/nm/sr to R2 = 0.78 and RMSE = 3.50 mw/m2/nm/sr for the non-linear model. Therefore, our results demonstrated that SIF760 is a reliable proxy for GPP and that SIF760-based GPP estimation can be greatly improved by integrating the CI with SIF760. These findings will be useful in the remote sensing of vegetation GPP using satellite, airborne, and tower-based SIF data because the CI is usually an easily accessible meteorological variable.


Asunto(s)
Tecnología de Sensores Remotos/métodos , Zea mays/metabolismo , Clorofila/metabolismo , Monitoreo del Ambiente/métodos , Fluorescencia , Fotosíntesis , Temperatura
20.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288443

RESUMEN

Solar-induced chlorophyll fluorescence (SIF) is regarded as a proxy for photosynthesis in terrestrial vegetation. Tower-based long-term observations of SIF are very important for gaining further insight into the ecosystem-specific seasonal dynamics of photosynthetic activity, including gross primary production (GPP). Here, we present the design and operation of the tower-based automated SIF measurement (SIFSpec) system. This system was developed with the aim of obtaining synchronous SIF observations and flux measurements across different terrestrial ecosystems, as well as to validate the increasing number of satellite SIF products using in situ measurements. Details of the system components, instrument installation, calibration, data collection, and processing are introduced. Atmospheric correction is also included in the data processing chain, which is important, but usually ignored for tower-based SIF measurements. Continuous measurements made across two growing cycles over maize at a Daman (DM) flux site (in Gansu province, China) demonstrate the reliable performance of SIF as an indicator for tracking the diurnal variations in photosynthetically active radiation (PAR) and seasonal variations in GPP. For the O2-A band in particular, a high correlation coefficient value of 0.81 is found between the SIF and seasonal variations of GPP. It is thus concluded that, in coordination with continuous eddy covariance (EC) flux measurements, automated and continuous SIF observations can provide a reliable approach for understanding the photosynthetic activity of the terrestrial ecosystem, and are also able to bridge the link between ground-based optical measurements and airborne or satellite remote sensing data.


Asunto(s)
Clorofila/análisis , Fotosíntesis , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/métodos , Calibración , China , Ritmo Circadiano , Productos Agrícolas , Diseño de Equipo , Fluorescencia , Bosques , Oxígeno/análisis , Estaciones del Año , Luz Solar , Temperatura , Zea mays
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda