Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Environ Manage ; 352: 120016, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232599

RESUMEN

To determine the priority control sources, an approach was proposed to evaluate the source-specific contribution to health risks from inhaling PM2.5-bound heavy metals (PBHMs). A total of 482 daily PM2.5 samples were collected from urban and suburban areas of Beijing, China, between 2018 and 2019. In addition to the PMF-PSCF model, a Pb isotopic IsoSource model was built for more reliable source apportionment. By using the comprehensive indicator of disability-adjusted life years (DALYs), carcinogenic and noncarcinogenic health risks could be compared on a unified scale. The study found that the annual average concentrations of the total PBHMs were significantly higher in suburban areas than in urban areas, with significantly higher concentrations during the heating season than during the nonheating season. Comprehensive dust accounted for the largest contribution to the concentration of PBHMs, while coal combustion contributed the most to the DALYs associated with PBHMs. These results suggest that prioritizing the control of coal combustion could effectively reduce the disease burden associated with PBHMs, leading to notable public health benefits.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Beijing , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Años de Vida Ajustados por Discapacidad , Monitoreo del Ambiente/métodos , China , Estaciones del Año , Carbón Mineral/análisis , Medición de Riesgo
2.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527881

RESUMEN

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Benceno , Monitoreo del Ambiente/métodos , China , Emisiones de Vehículos/análisis , Estaciones del Año , Polvo/análisis , Carbón Mineral/análisis , Sulfatos/análisis
3.
J Environ Sci (China) ; 138: 561-571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135420

RESUMEN

To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Oligoelementos/análisis , Plomo/análisis , Monitoreo del Ambiente , Polvo/análisis , China
4.
Environ Sci Technol ; 57(25): 9277-9286, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37307015

RESUMEN

The spatial variation and temporal trends of legacy and emerging per- and polyfluoroalkyl substances (PFASs) from 2011 to 2021 in agricultural soils of Eastern China, which is one of the largest PFAS production and consumption regions in the world, were evaluated. We found that PFOS concentration decreased by 28.2% during this period. Given that agricultural soils are sinks for persistent organic pollutants (POPs), our results suggest that the implementation of the Stockholm Convention and its indirect effects, combined with a voluntary phaseout, are effective for controlling PFOS pollution in agricultural soils in China. In addition, our results show that 19 out of 28 PFASs were detected in >40% of the samples, with concentrations being 17.6-1950 pg/g with a median of 373 pg/g. Further, legacy PFASs were major components, accounting for 63.8% of total PFASs. Based on the source appointment of PFASs via the Positive Matrix Factorization (PMF) model, the contribution ratio of consumer product industries has steadily increased from 6.10 to 26.2%, while both legacy and novel fluoropolymer industries have declined from 24.2 to 1.50 and 19.1 to 5.40%, further confirming the effectiveness of the Convention.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Suelo , Fluorocarburos/análisis , China , Polímeros de Fluorocarbono , Contaminantes Químicos del Agua/análisis
5.
Ecotoxicol Environ Saf ; 244: 114064, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087470

RESUMEN

A total of 511 topsoils and 139 deep soil samples were collected to analyze the distribution characteristics, regional differentiation factors, and contamination sources of Cd in Shantou City, and to assess its environmental, ecological, and human health risks. We used a combination of multivariate statistics and geostatistics to quantify the distribution and level of Cd contamination in the study area, and an absolute principal component scores-multiple linear regression model to resolve the sources of contamination and their contribution values, combined with the health risk model to assess the human health risk from each source. The result exhibited that the average value of soil Cd content was 0.100 mg/kg, which was lower than the threshold value of soil environmental quality standard, but higher than the 0.070 mg/kg background value of soil. The high-value areas of surface Cd content in the study area were distributed in the western, northern, and northeastern parts of Shantou, and the source of Cd in the soil was a mix of anthropogenic and natural contamination. The non-carcinogenic and carcinogenic risks of heavy metal Cd exposure pathways are: oral ingestion > dermal contact > inhalation. The human health risk posed by Cd is below the reference threshold, indicating that the Cd contents in the soil have no unacceptable health risk to the residents. Among industrial sources, natural sources, and unknown sources with potential carcinogenic and non-carcinogenic risks, natural sources were the main source of contamination for adults and children. Among the different soil types, paddy, and red soils had relatively high Cd content, and among the different soil-forming parent materials, the Cd content in soils developed on Quaternary sediments was significantly higher than that other parent materials. Among the different land use types, the Cd content of soil for construction land was the highest. This study provides a scientific foundation and reference for the prevention of soil Cd contamination in Shantou City and the analysis of soil contamination sources in areas with similar contamination patterns.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Niño , China , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
6.
Environ Monit Assess ; 194(8): 568, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794258

RESUMEN

In this study, the multi-marker approach was used for the first time with a highly urbanized lake located in the city of Fortaleza, Brazil, to provide a comprehensive view of temporal trends in sources of pollutants and evaluate the relation between the influence of anthropogenic activities and socioeconomic development. Total concentrations of the markers analyzed ranged from 21.0 to 103.8 ng g-1, 450.2 to 2390.2 ng g-1, and 233.8 to 9827.3 ng g-1 for ∑PAHs, ∑n-alk, and ∑sterols, respectively. Concentrations and patterns of PAH, AH, and sterol ratio distribution changed over time and may be associated with different episodes in the history of the city of Fortaleza. The marker ratio distribution in the sediment core revealed an overlap of natural and anthropogenic sources, with degraded oil, biogenic inputs, pyrogenic processes, and fecal contamination from humans and animals in the past changing to petroleum fossil inputs and high contamination from sewage in the present day. The distribution of markers and the chronological history of Fortaleza revealed two distinct periods related to human activities during the development of the city. In the first period (prior to the 1950s), the main human activities were animal breeding and the use of biomass for domestic activities, public and cargo transportation, and commercial activities, especially food production. In the second period (after the 1950s), expansion of the city occurred due to the so-called Brazilian economic miracle and the main human activities were industrialization and urbanization processes, involving deforestation, paving, sewage discharge, and petroleum combustion.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Efectos Antropogénicos , Brasil , Monitoreo del Ambiente , Sedimentos Geológicos , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
7.
Bull Environ Contam Toxicol ; 108(5): 819-823, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35386005

RESUMEN

Fine particulate matter (named PM2.5) has become a prominent and dangerous form of air pollution. The chemical composition of PM2.5 mainly includes inorganic elements, water soluble ions, elemental carbon (EC), organic carbon (OC), and organic compounds. The detection method for inorganic elements mainly includes X ray fluorescence, inductively coupled plasma-atomic emission spectrometry, and inductively coupled plasma mass spectrometry. As for water soluble ions, ion chromatography is the most common detection method. EC and OC are usually detected by carbon analyzer. The organic compounds are determined by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. In this paper, the merits and drawbacks of each analytical methods for the determination of PM2.5 chemical composition are summarized. This review also includes our discussion on the improvement of the analytical accuracy for the determination of PM2.5 chemical composition owing to the development of reference materials.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Iones/análisis , Compuestos Orgánicos/análisis , Material Particulado/análisis , Estaciones del Año , Agua/química
8.
J Environ Sci (China) ; 115: 443-452, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969472

RESUMEN

The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 µg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China/epidemiología , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2
9.
Environ Geochem Health ; 43(1): 139-152, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32785822

RESUMEN

Danjiangkou Reservoir is the biggest artificial reservoir in China. But spatiotemporal distribution and risks of metal(loid)s in it were still unclear after the operation of Middle Route of South-to-North Water Diversion Project. In this study, distribution pattern of fifteen metal(loid)s in the Danjiangkou Reservoir was investigated. It was shown that metal(loid)s concentrations in the water were much lower than the drinking water quality standards in China, while Sb, Co, Cd and Cr were identified as the major pollutants in the sediments. Environment-metal(loid)s correlation analysis revealed total organic carbon, sulfate, temperature, dissolved oxygen and total phosphorus markedly controlled metal(loid)s distribution in the water, while organic carbon, total phosphorus and ammonia nitrogen shaped their distribution in the sediments. Results of risk assessment further revealed that the sediments of Danjiangkou Reservoir were minor to moderate polluted, and Sb, Cd exhibited the highest potential ecological risk. Additionally, source identification showed agricultural activities (25.3%), industrial and mining activities (17.5%) and natural processes (57.2%) were the dominant sources of metal(loid)s burden in the sediments. Overall, the results are of significance to understanding the ecological risk and pollution sources in the Danjiangkou Reservoir, which is essential for the effective management of metal(loid)s pollution.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/química , Metaloides/análisis , Metales/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Contaminación Difusa/análisis , Contaminación Difusa/estadística & datos numéricos , Medición de Riesgo
10.
Environ Monit Assess ; 193(9): 568, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34386879

RESUMEN

The level, source, and risk of toxic elements in traditional agricultural soils are particularly crucial for the sustainable development of agriculture. An important agricultural production base was selected, a total of 251 topsoil samples were collected, eight toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in soil were analyzed, and environmental and health risk assessments were conducted. Results showed that all concentrations of eight elements in soil samples were lower than the risk screening values with negligible pollution risk. Approximately 83.8% of Hg in soil was originated from atmospheric deposition related to industrial emissions, 53.2% of Cd was derived from direct industrial activities, and the other elements came from soil parent materials or agricultural activities. Accumulation risk of As in agricultural products, potential ecological risk from Cd, and As's ingestion risk and Cr's dermal contact risk should be paid more attention. More stricter monitoring and coping countermeasures and strategies should be established to ensure the sustainable development of agriculture.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adaptación Psicológica , Agricultura , China , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
11.
Environ Res ; 185: 109478, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32276165

RESUMEN

As important pollution gases and represented precursors of both ozone and second organic aerosol (SOA), the component characteristics, source origins, environmental health and emission control of volatile organic compounds (VOCs), are gaining more and more attention in Chinese megacities. In order to understand the concentration, composition and temporal and spatial distribution characteristics of VOCs in the atmosphere of Chengdu, a megacity located in Sichuan basin in southwest China, the offline sampling measurements of VOCs were carried out at 28 different field sites covering all the districts and counties of Chengdu during special periods from May 2016 to January 2017. Speciated VOCs measurement was performed by the GC-FID/MS, and 99 species were identified. The averaged total VOC mixing ratios of each sampling site were in the range from 35.03 to 180.57 ppbv. Based on these observational data, the distribution characteristics of VOCs in different months and different regions of Chengdu were clarified. The VOCs data were used to estimate the potential amount of ozone, secondary aerosol formation and health risk assessment in Chengdu. Furthermore, the positive matrix factorization (PMF) model was used to identify the dominant emission sources and evaluate their contribution to VOCs in the city. The two main sources of VOCs in Chengdu were motor vehicle exhaust and solvent utilization. These accounted for 43% of all emission sources. In the summertime, due to higher temperatures and stronger sunlight, the contribution of natural sources and secondary emissions were also relatively high, which were supported by the regional emission inventories. Finally, the controlling direction of VOCs and O3 pollution in Chengdu was discussed, and the VOCs pollution control strategy was proposed for the near future.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
12.
Environ Res ; 183: 109141, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31999999

RESUMEN

BACKGROUND: Ozone is currently one of the most important air pollutants. Volatile organic compounds (VOCs) can easily react with atmospheric radicals to form ozone. In-field measurement of VOCs may help in estimating the local VOC photochemical pollution level. METHOD: This study examined the spatial and temporal distribution characteristics of VOCs during winter at three typical sites of varying classification in China; industrial (Guangzhou Economic and Technological Development District (GETDD)), urban (Guangzhou higher education mega center (HEMC)), and rural (Pingyuan county (PYC)), using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). RESULTS: The concentrations of total VOCs (TVOCs) at the GETDD, HEMC and PYC sites were 352.5, 129.2 and 75.1 ppb, respectively. The dominant category of VOCs is nitrogen-containing VOCs (NVOCs, accounting for 43.3% of TVOCs) at GETDD, of which C4H11N (m/z+ = 74.10, butyl amine) was the predominant chemical species (80.5%). In contrast, oxygenated VOCs (OVOCs) were the most abundant at HEMC and PYC, accounting for 60.2% and 64.1% of the total VOCs, respectively; here, CH4O (m/z+ = 33.026, methanol) was the major compound, accounting for 40.5% of the VOCs at HEMC and 50.9% at PYC. The ratios of toluene to benzene (T/B) were calculated for different measured sites, as the ratios of T/B can reveal source resolution of aromatic VOCs. The average contributions to total ozone formation potentials (OFP) of the total measured VOCs in each area were 604.9, 315.9 and 111.7 µg/m3 at GETDD, HEMC and PYC, respectively; the highest OFP contributors of the identified VOCs were aliphatic hydrocarbons (AlHs) at GETDD, aromatic hydrocarbons (AHs) at HEMC, and OVOCs at PYC. CONCLUSIONS: OFP assessment indicated that the photochemical pollution caused by VOCs at GETDD was serious, and was also significant in the HEMC region. The dominant VOC OFP groups (AlHs and AHs) should be prioritized for control, in order to help reduce these effects.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , China , Monitoreo del Ambiente , Ozono/química
13.
Ecotoxicol Environ Saf ; 163: 307-322, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056345

RESUMEN

Environmental pollution, particularly oil pollution, has been a long-standing problem in marine areas. With the aim to assess the pollution status in the Persian Gulf, Iran, herein surface sediments were collected from Kharg and Lark coral reefs, in summer (dry season) and winter (wet season), to evaluate the spatio-temporal variations of n-alkanes and PAHs. The mean total organic carbon (TOC) contents of sediments showed a significantly dramatic variation (p < 0.05) in both seasons at both Islands, with high values recorded at sites located near pollutant inputs. The total mean percent of clay grain-sized sediments at Kharg were 26.57% and 28.86% in dry and wet seasons, respectively, while in Lark were 26.73% in summer and 24.57% in winter. Additionally, at Kharg the mean ∑25n-alkanes and ∑30PAHs ranged from 81.35 to 573 µg g-1 dw and 60.25-491 ng g-1 dw in dry season, and 171-754 µg g-1 dw and 41.61-693 ng g-1 dw in winter, respectively. At Lark, the average ∑25n-alkanes and ∑30PAHs varied from 31.18 to 272 µg g-1 dw and 41.25-196 ng g-1 dw in summer, whilst oscillated from 57.99 to 332 µg g-1 dw and 16.56-487 ng g-1 dw in wet season, respectively. The lowest mean level of the examined pollutants were spanned in offshore sites, while the highest average concentrations indicated that contaminated sediments were at onshore stations at both Islands in both seasons. Significant seasonal variations (p < 0.05) were observed at most sampling sites for all pollutants. Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) indicated that n-alkanes and PAHs had mostly a petrogenic source. The compositional profile of PAHs showed that 2 and 3-ring PAHs were abundant at both sampling sites. Significant positive correlation (r > 0.76) was observed between ∑25n-alkanes and ∑30PAHs at Kharg and Lark sediments with TOC content, especially for the sites with high total pollutant concentrations. Based on the potential impact and ecological risk of n-alkanes and PAHs in surface sediments, it is, therefore, necessary in future studies to focus on their effects on corals and other marine organisms within this ecosystem.


Asunto(s)
Alcanos/análisis , Sedimentos Geológicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Arrecifes de Coral , Monitoreo del Ambiente , Océano Índico , Irán , Estaciones del Año
14.
Sci Total Environ ; 915: 170096, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224894

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals with potential adverse health effects. Information concerning PFAS concentrations in relation to pregnancy is scarce in South America and non-existent in Argentina. AIM: We aimed to investigate an extended maternal PFAS profile herein serum concentrations in a regional and global view, source appointment, and determinants in Argentinean women. METHODS: A cross-sectional study with a sampling period from 2011 to 2012 included 689 women from Ushuaia and Salta in Argentina. Serum samples collected two days postpartum were analyzed by ultra-high pressure liquid chromatography coupled to electrospray negative ionisation tandem-quadrupole mass-spectrometry. Principal Component Analysis (PCA) following absolute principal component score-multiple linear regression (APCS-MLR) was used for PFAS source appointments. Determinants of PFAS were explored through a MLR approach. A review of previous studies within the same period was conducted to compare with present levels. RESULTS: Argentinean PFAS concentrations were the lowest worldwide, with PFOS (0.74 ng/mL) and PFOA (0.11 ng/mL) as the dominant substances. Detection frequencies largely aligned with the compared studies, indicating the worldwide PFAS distribution considering the restrictions. The PCA revealed region-specific loading patterns of two component groups of PFAS, a mixture of replaced and legacy substances in Ushuaia and long-chain in Salta. This might relate to a mix of non-diet and diet exposure in Ushuaia and diet in Salta. Region, age, lactation, parity, household members, migration, bottled water, and freshwater fish were among the determinants of various PFAS. CONCLUSION: This is the first study to monitor human PFAS exposure in Argentina. Maternal PFAS concentrations were the lowest observed worldwide in the same period. Exposure contributions are suggested to be affected by restrictions and substitutions. Given the limited population-based studies and the emergence of PFAS, it is essential to conduct further monitoring of PFAS in Argentina and South America.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Embarazo , Animales , Humanos , Femenino , Estudios Transversales , Dieta , Lactancia , Fluorocarburos/análisis , Ácidos Alcanesulfónicos/análisis
15.
Mar Pollut Bull ; 199: 115953, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128250

RESUMEN

Strict restriction on legacy per- and polyfluoroalkyl substances (PFASs) has caused a dramatic increase in production and usage of emerging PFASs over the last decades. However, the environmental behaviors of emerging PFASs is largely unknown in Daling River, Northern China. In this study, the potential sources, sediment-water partitioning and substitution trends of PFASs were investigated in overlying water and sediments from Daling River and its estuary. Perfluorooctane sulfonate and 6:2 fluorotelomer sulfonic acid were major compounds, and sodium p-perfluorous nonenoxybenzene sulfonate was first detected. Firefighting foam manufacturing and fluoropolymer production were the main sources of PFASs. Compared to legacy PFASs (C8), the emerging PFASs (C6 - C9) were more incline to distribute into overlying water. Substitution trends indicated 6:2 fluorotelomer sulfonic acid and hexafluoropropylene oxide trimer acid as the important alternatives of perfluorooctane sulfonate and perfluorooctanoic acid, respectively. The results were meaningful for understanding the environmental behaviors of emerging PFASs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Estuarios , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Agua , China
16.
J Hazard Mater ; 474: 134770, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838522

RESUMEN

Accompanied with restriction of legacy per- and polyfluoroalkyl substances (PFASs), numbers of emerging PFASs are widely detected in the environment. However, information on environmental occurrences and behaviors of emerging PFASs were scarce in agricultural soils. In this study, the spatial distributions, sources, substitution trends and ecological risk assessment of 31 legacy and emerging PFASs were investigated in 69 agricultural soils from Fuxin, North China. The 26 out of 31 PFASs were detected with concentrations of 57.36 - 1271.06 pg/g dry weight. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were predominant in legacy and emerging PFASs, respectively. Based on principal component and dual carbon-nitrogen stable isotope analysis, atmosphere, fluorochemical activities and river irrigation were main sources of PFASs. Substitution trends indicated HFPO-DA and short chain perfluoroalkyl carboxylic acids (C4 - C7) as main alternatives of PFOA, and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) as major substitutes to perfluorooctanesulfonic acid (PFOS). The calculated risk quotient values (< 0.006) only indicated potential low ecological risk of 7 target PFASs in agricultural soils. The results of this study broadened out the information of PFAS contamination in agricultural soils, which were significant for PFAS supervision in China.

17.
Environ Sci Pollut Res Int ; 31(8): 11472-11489, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198085

RESUMEN

Water-soluble organic compounds (WSOCs) have received extensive attention due to their indistinct chemical components, complex sources, negative environmental impact, and potential health effects. To the best of our knowledge, until now, there has been no comprehensive review focused on the research progress of WSOCs. This paper reviewed the studies on chemical constituent and characterization, distribution condition, sources, environmental impact, as well as the potential health effects of WSOCs in the past 13 years. Moreover, the main existing challenges and directions for the future research on WSOCs were discussed from several aspects. Because of the complex composition of WSOCs and many unknown individual components that have not been detected, there is still a need for the identification and quantification of WSOCs. As modern people spend more time in indoor environments, it is meaningful to fill the gaps in the component characteristics and sources of indoor WSOCs. In addition, although in vitro cell experiments have shown that WSOCs could induce cellular oxidative stress and trigger the inflammatory response, the corresponding mechanisms of action need to be further explored. The current population epidemiology research of WSOCs is missing. Prospectively, we propose to conduct a comprehensive and simultaneous analysis strategy for concentration screening, source apportionment, potential health effects, and action mechanisms of WSOCs based on high throughput omics coupled with machine learning simulation and prediction.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Agua/análisis , Compuestos Orgánicos/análisis , Estrés Oxidativo , Monitoreo del Ambiente
18.
Sci Total Environ ; 892: 164567, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37268120

RESUMEN

Atmospheric particulate matter (PM) enriched with lead (Pb) has severe irreversible effects on human health. Therefore, identifying the contribution of Pb emission sources is essential for protecting the health of residents. Using the Pb isotopic tracer method, this study explored the seasonal characteristics and primary anthropogenic Pb sources for atmospheric PM in Tianjin in 2019. We calculated the contribution of Pb sources using the end-member and MixSIAR models. The results showed that Pb loaded in PM10 was more abundant in January than in July, and was strongly influenced by meteorological conditions and anthropogenic emissions. The primary Pb sources of the aerosol samples originated from coal combustion and vehicle and steel plant emissions, mainly originating from local Pb emission sources in Tianjin. The PM10-bond Pb in January was influenced by regional transportation and local sources. The MixSIAS model calculated the contribution of coal combustion as approximately 50 %. Compared with that in January, the contribution of coal combustion decreased by 9.6 % in July. Our results indicate that some of the benefits of phased-out leaded gasoline have been short-lived, whereas other industrial activities releasing Pb have increased. Furthermore, the results emphasise the practicability of the Pb isotope tracer source approach for identifying and distinguishing between different anthropogenic Pb inputs. Based on this study, scientific and effective air pollution prevention and control programs can be formulated to provide decision support for the guidance and control of air pollutant emissions.


Asunto(s)
Contaminantes Atmosféricos , Plomo , Humanos , Plomo/análisis , Teorema de Bayes , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Isótopos/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , China
19.
Sci Total Environ ; 894: 165054, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37348733

RESUMEN

The contributions of natural versus anthropogenic forces on temporal changes of metals in the soil of the Yangtze River delta region were successfully quantified by combining repeated soil sampling, geostatistics and the modified principal component scores and multiple linear regressions approach. The findings show that the mean concentrations of Cu, Cd, As, Hg, Cr and Ni generally exhibited a decrease trend from 2010 to 2020. The decline of soil Hg was most outstanding, decreased by 20 % as a whole. The result of the modified principal component scores and multiple linear regressions approach suggests that the decrease of Hg content was predominately driven by the geochemical processes, with 48 % contribution. The mean soil Pb concentration increased by 40 % from 2010 to 2020. Approximately 76 % of the Pb change was attributed to the strengthened development of Pb-containing battery industry in the south part of the Yangtze River delta region. The Pb battery industry development also contributed 48 % of the change of Cd. The anthropogenic activities involving Cu, Zn or fossil fuel consumption contributed 32-35 % of the changes of As, Cu and Zn concentrations in the soil, and the steel industries contributed 82 % of Cr and 60 % of Ni changes, respectively.

20.
Geohealth ; 7(3): e2022GH000767, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36949891

RESUMEN

We present a newly developed approach to characterize the sources of fine particulate matter (PM2.5)-related premature deaths in Europe using the chemical transport model GEOS-Chem and its adjoint. The contributions of emissions from each individual country, species, and sector are quantified and mapped out at km scale. In 2015, total PM2.5-related premature death is estimated to be 449,813 (257,846-722,138) in Europe, 59.0% of which were contributed by domestic anthropogenic emissions. The anthropogenic emissions of nitrogen oxides, ammonia, and organic carbon contributed most to the PM2.5-related health damages, making up 29.6%, 23.2%, and 16.8%, respectively of all domestic anthropogenic contributions. Residential, agricultural, and ground transport emissions are calculated to be the largest three sectoral sources of PM2.5-related health risks, accounting for 23.5%, 23.0%, and 19.4%, respectively, of total anthropogenic contributions within Europe. After excluding the influence of extra-regional sources, we find eastern European countries suffered from more premature deaths than their emissions caused; in contrast, the emissions from some central and western European regions contributed premature deaths exceeding three times the number of deaths that occurred locally. During 2005-2015, the first decade of PM2.5 regulation in Europe, emission controls reduced PM2.5-related health damages in nearly all European countries, resulting in 63,538 (46,092-91,082) fewer PM2.5-related premature deaths. However, our calculation suggests that efforts to reduce air pollution from key sectors in some countries can be offset by the lag in control of emissions in others. International cooperation is therefore vitally important for tackling air pollution and reducing corresponding detrimental effects on public health.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda