Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67.790
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(10): 2343-2358, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729109

RESUMEN

As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Biología Computacional/métodos , Análisis de Datos , Animales , Análisis por Conglomerados
2.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244548

RESUMEN

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol Quinasa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinasa/metabolismo , NADPH Oxidasas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosforilación , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
3.
Cell ; 187(16): 4231-4245.e13, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38964328

RESUMEN

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.


Asunto(s)
Microscopía por Crioelectrón , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Células HEK293 , Unión Proteica , Anticuerpos Neutralizantes/inmunología , Modelos Moleculares , Receptores Virales/metabolismo , Receptores Virales/química
4.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428393

RESUMEN

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Plastidios , Cloroplastos/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , Nicotiana/genética , Fotosíntesis , Plastidios/enzimología
5.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37804831

RESUMEN

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Asunto(s)
Alphavirus , Animales , Humanos , Fiebre Chikungunya , Virus Chikungunya/química , Mamíferos , Receptores Virales/metabolismo
6.
Cell ; 186(21): 4662-4675.e12, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734372

RESUMEN

Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.

7.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36206754

RESUMEN

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Asunto(s)
Cobre , Mucinas , Mucinas/metabolismo , Mucina 2 , Cobre/análisis , Cobre/metabolismo , Intestinos , Moco/metabolismo , Mucosa Intestinal/metabolismo
8.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021063

RESUMEN

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Asunto(s)
Evolución Biológica , Hepatocitos/metabolismo , Macrófagos/metabolismo , Proteogenómica , Animales , Núcleo Celular/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Homeostasis , Humanos , Macrófagos del Hígado/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Lípidos/química , Hígado/metabolismo , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidad/patología , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética
9.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34562363

RESUMEN

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Asunto(s)
Estrés Fisiológico , Aminoácidos/química , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Femenino , Humanos , Iones , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos , Zinc/farmacología
10.
Cell ; 184(17): 4495-4511.e19, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34289345

RESUMEN

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Multimerización de Proteína , Piroptosis , Transducción de Señal , Aminoácidos/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Pruebas Genéticas , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas de Unión a Fosfato/química , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34597584

RESUMEN

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Asunto(s)
Calcio/metabolismo , Depuradores de Radicales Libres/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/inmunología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Resistencia a la Enfermedad/genética , Modelos Biológicos , Oryza/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Unión Proteica , Estabilidad Proteica , Reproducción , Especificidad de la Especie , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Zea mays/inmunología
12.
Cell ; 180(5): 968-983.e24, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109415

RESUMEN

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.


Asunto(s)
Envejecimiento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cisteína/metabolismo , Humanos , Ratones , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Proteómica/métodos , Especies Reactivas de Oxígeno , Transducción de Señal/genética
13.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763155

RESUMEN

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Asunto(s)
Dopamina/metabolismo , Hipotálamo/fisiología , Neuronas/fisiología , Conducta Paterna/fisiología , Animales , Encéfalo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Técnicas de Placa-Clamp , Prolactina/sangre , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/deficiencia , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo
14.
Cell ; 181(6): 1307-1328.e15, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32502393

RESUMEN

The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Antioxidantes/metabolismo , Drosophila , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Estrés Oxidativo/fisiología
15.
Annu Rev Biochem ; 88: 605-633, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31018111

RESUMEN

Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.


Asunto(s)
Técnicas Biosensibles/métodos , Especies Reactivas de Oxígeno/análisis , Colorantes Fluorescentes , Imagen Óptica , Oxidación-Reducción , Estrés Oxidativo
16.
Cell ; 177(5): 1109-1123.e14, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031001

RESUMEN

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.


Asunto(s)
Organismos Acuáticos/genética , Biodiversidad , Virus ADN/genética , ADN Viral/genética , Metagenoma , Microbiología del Agua
17.
Cell ; 178(4): 820-834.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398339

RESUMEN

Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.


Asunto(s)
Clostridiales/genética , Flujo Génico , Microbiota/genética , Adaptación Fisiológica/genética , Alelos , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Modelos Genéticos , Tasa de Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Prochlorococcus/genética , Sulfolobus/genética , Vibrio/genética
18.
Cell ; 173(6): 1413-1425.e14, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29754815

RESUMEN

BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas , Melanoma/genética , Ratones , Mutación , Trasplante de Neoplasias , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/genética , Resultado del Tratamiento , Vorinostat/farmacología
19.
Cell ; 173(6): 1468-1480.e9, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731167

RESUMEN

The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.


Asunto(s)
Arabidopsis/fisiología , Pared Celular/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , NADPH Oxidasas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Pseudomonas syringae , Propiedades de Superficie
20.
Cell ; 175(2): 502-513.e13, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30245009

RESUMEN

Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals. This phenomenon becomes more pronounced in the context of nutritional excess, such as during hyperactive glucose metabolism. Conversion of pyruvate to acetate occurs through two mechanisms: (1) coupling to reactive oxygen species (ROS) and (2) neomorphic enzyme activity from keto acid dehydrogenases that enable function as pyruvate decarboxylases. Further, we demonstrate that de novo acetate production sustains Ac-CoA pools and cell proliferation in limited metabolic environments, such as during mitochondrial dysfunction or ATP citrate lyase (ACLY) deficiency. By virtue of de novo acetate production being coupled to mitochondrial metabolism, there are numerous possible regulatory mechanisms and links to pathophysiology.


Asunto(s)
Acetatos/metabolismo , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , ATP Citrato (pro-S)-Liasa/fisiología , Acetilcoenzima A/biosíntesis , Acetilcoenzima A/metabolismo , Acetilación , Animales , Femenino , Glucólisis/fisiología , Lipogénesis/fisiología , Masculino , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Oxidorreductasas , Piruvato Descarboxilasa/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda