Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Front Pharmacol ; 11: 636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477123

RESUMEN

Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.

2.
Front Pharmacol, v. 11, 636, mai. 2020
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3070

RESUMEN

Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.

3.
Vaccine ; 32(18): 2086-92, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24565754

RESUMEN

We report the production of a neutralizing monoclonal antibody able to recognize the venoms of three major medically important species of Loxosceles spiders in Brazil. The mAb was produced by immunization of mice with a toxic recombinant L. intermedia sphingomyelinase D {SMases D isoform (rLiD1)} [1] and screened by enzyme-linked immunosorbent assay (ELISA) using L. intermedia, L. laeta and L. gaucho venoms as antigens. One clone (LiD1mAb16) out of seventeen anti-rLiD1 hybridomas was cross-reactive with the three whole Loxosceles venoms. 2D Western blot analysis indicated that LiD1mAb16 was capable of interacting with 34 proteins of 29-36kDa in L. intermedia, 33 in L. gaucho and 27 in L. laeta venoms. The results of immunoassays with cellulose-bound peptides revealed that the LiD1mAb16 recognizes a highly conserved linear epitope localized in the catalytic region of SMases D toxins. The selected mAb displayed in vivo protective activity in rabbits after challenge with rLiD1. These results show the potential usefulness of monoclonal antibodies for future therapeutic approaches and also opens up the perspective of utilization of these antibodies for immunodiagnostic assays in loxoscelism.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Hidrolasas Diéster Fosfóricas/inmunología , Venenos de Araña/enzimología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas , Mapeo Epitopo , Hibridomas , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Pruebas de Neutralización , Conejos , Proteínas Recombinantes/inmunología , Venenos de Araña/inmunología , Arañas/enzimología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda