Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Nano Lett ; 24(32): 9846-9853, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092593

RESUMEN

Manipulating individual molecular spin states with electronic current has the potential to revolutionize quantum information devices. However, it is still unclear how a current can cause a spin transition in single-molecule devices. Here, we propose a spin-crossover (SCO) mechanism induced by electron-phonon coupling in an iron(II) phthalocyanine molecule situated on a graphene-decoupled Ir(111) substrate. We performed simulations of both elastic and inelastic electron tunneling spectroscopy (IETS), which reveal current-induced Fe-N vibrations and an underestimation of established electron-vibration signals. Going beyond standard perturbation theory, we examined molecules in various charge and spin states using the Franck-Condon framework. The increased probability of spin switching suggests that notable IETS signals indicate SCO triggered by the inelastic vibrational excitation associated with Fe-N stretching.

2.
Chemistry ; 30(4): e202302887, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37906679

RESUMEN

Cooling [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) triggers very slow spin crossover below 80 K (T1/2 ↓ =76 K). The spin crossover (SCO) is accompanied by a hysteresis loop (T1/2 ↑ =89 K). In contrast to isostructural perchlorate analogue [Fe(bbtr)3 ](ClO4 )2 in which spin crossover during cooling is preceded by phase transition at TPT =126 K in tetrafluoroborate phase transition does not occur to the beginning of spin crossover (80 K). Studies of mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.5≤x≤0.9) showed that a phase transition precedes spin crossover, however, for x≅0.46 intersection of T1/2 (x) and TPT (x) dependencies takes place. The application of pressure of 1 GPa shifts the spin crossover in [Fe(bbtr)3 ](BF4 )2 to a temperature above 270 K. High-pressure studies of neat tetrafluoroborate and perchlorate, as well as mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.1≤x≤0.9), revealed that at 295 K P1/2 value changes linearly with x indicating similar mechanism of spin crossover under elevated pressure in all systems under investigation. Variable pressure single crystal X-ray diffraction studies confirmed that in contrast to thermally induced spin crossover undergoing differently in tetrafluoroborate and perchlorate an application of high pressure removes this differentiation leading to a similar mechanism depending at first on start spin crossover and then P-3→P-1 phase transition occurs. In this report we have shown that 2D coordination polymer [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) treated to date as spin crossover silent shows thermally induced spin crossover phenomenon. Spin crossover in tetrafluoroborate is extremely slow. Determination of the spin crossover curve required carrying measurement in the settle mode-cooling from 85 to 70 K took about 600 h (average velocity of change of temperature ca. 0.0004 K/min).

3.
Chemphyschem ; : e202400238, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837584

RESUMEN

We investigate the static properties of a new class of 1D Ising-like Hamiltonian for binuclear spin-crossover materials accounting for two-, three-, and four-body short-range interactions between binuclear units of spins ( s 1 A , s 1 B ) ${(s_1^A, s_1^B )}$ and ( s 2 A , s 2 B ) ${(s_2^A, s_2^B )}$ . The following 2-, 3-, and 4-body J 1 ( s 1 A + s 1 B ) ( s 2 A + s 2 B ) ${J_1 (s_1^A + s_1^B )(s_2^A + s_2^B )}$ , K 1 s 1 A s 1 B ( s 2 A + s 2 B ) ${K_1 s_1^A s_1^B (s_2^A + s_2^B )}$ , and K 2 ( s 1 A s 1 B ) ( s 2 A s 2 B ) ${K_2 (s_1^A s_1^B )(s_2^A s_2^B )}$ terms are considered, in addition to intra-binuclear interactions, such as effective ligand-field energy and exchange-like coupling. An exact treatment is carried out within the frame of the transfer matrix method, leading to a 4×4 matrix from which, we obtained the thermal evolution of the thermodynamic quantities. Several situations of model parameter values were tested, among which that of competing intra- and inter-molecular interactions, leading to the occurrence of (i) one-step spin transition, (ii) two-, three-, and four-step transitions, obtained with a reasonable number of parameters. To reproduce first-order phase transitions, we accounted for inter-chains interactions, treated in the mean-field approach. Hysteretic multi-step transitions, recalling experimental observations, are then achieved. Overall, the present model not only suggests new landscapes of interaction configurations between SCO molecules but also opens new avenues to tackle the complex behaviors often observed in the properties of SCO materials.

4.
Angew Chem Int Ed Engl ; : e202411865, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185688

RESUMEN

Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations. Spin crossover of single molecules in dense islands is achieved via electron injection. Spin-flip excitations are resolved in scanning tunneling spectra in a magnetic field enabling the direct identification of the molecular spin state, and revealing the existence of magnetic anisotropy in the HS molecules.

5.
Angew Chem Int Ed Engl ; 63(23): e202405514, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38584585

RESUMEN

Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.

6.
Angew Chem Int Ed Engl ; : e202413988, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231118

RESUMEN

We have prepared a series of bis(semiquinone) compounds with dithiophene bridges of different length that evolve from closed-shell to full diradical character on the basis of the narrow singlet-triplet energy gaps which allows the triplet population at 298 K for the longer compound. The medium size compound has a variety of photonic properties with absorptions and emission in the true NIR region mediated by a unique case of antikasha emission. A whole set of optical absorption and emission steady state and pico-second transient absorption spectroscopies together with vibrational spectroscopies, spectroelectrochemistry and theoretical calculations have been carried our and subsequently interpreted.

7.
Angew Chem Int Ed Engl ; 63(21): e202402044, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38469657

RESUMEN

The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.

8.
J Comput Chem ; 44(3): 468-479, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36326153

RESUMEN

To improve the catalytic activity of 3d transition metal catalysts, redox-active ligands are a promising tool. These ligands influence the oxidation state of the metal center as well as the ground spin-state and make the experimental determination of both properties challenging. Therefore, first-principles calculations, in particular employing density functional theory with a proper choice of exchange-correlation (xc) functional, are crucial. Common xc functionals were tested on a simple class of metal complexes: homoleptic, octahedral tris(diimine) iron(II) complexes. The spin-state energy splittings for most of these complexes showed the expected linear dependence on the amount of exact exchange included in the xc functionals. Even though varying redox-activity affects the electronic structure of the complexes considerably, the sensitivity of the spin-state energetics to the exact exchange admixture is surprisingly small. For iron(II) complexes with highly redox-active ligands and for a broad range of ligands in the reduced tris(diimine) iron(I) complexes, self-consistent field convergence to local minima was observed, which differ from the global minimum in the redox state of the ligand. This may also result in convergence to a molecular structure that corresponds to an energetically higher-lying local minimum. One criterion to detect such behavior is a change in the sign of the slope for the dependence of the spin-state energy splittings on the amount of exact exchange. We discuss possible protocols for dealing with such artifacts in cases in which a large number of calculations makes checking by hand unfeasible.

9.
Small ; 19(50): e2304954, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594729

RESUMEN

Controlling the deposition of spin-crossover (SCO) materials constitutes a crucial step for the integration of these bistable molecular systems in electronic devices. Moreover, the influence of functional surfaces, such as 2D materials, can be determinant on the properties of the deposited SCO film. In this work, ultrathin films of the SCO Hofmann-type coordination polymer [Fe(py)2 {Pt(CN)4 }] (py = pyridine) onto monolayers of 1T and 2H MoS2 polytypes are grown. The resulting hybrid heterostructures are characterized by GIXRD, XAS, XPS, and EXAFS to get information on the structure and the specific interactions generated at the interface, as well as on the spin transition. The use of a layer-by-layer results in SCO/2D heterostructures, with crystalline and well-oriented [Fe(py)2 {Pt(CN)4 }]. Unlike with conventional Au or SiO2 substrates, no intermediate self-assembled monolayer is required, thanks to the surface S atoms. Furthermore, it is observed that the higher presence of Fe3+ in the 2H heterostructures hinders an effective spin transition for [Fe(py)2 {Pt(CN)4 }] films thinner than 8 nm. Remarkably, when using 1T MoS2 , this transition is preserved in films as thin as 4 nm, due to the reducing character of this metallic substrate. These results highlight the active role that 2D materials play as substrates in hybrid molecular/2D heterostructures.

10.
Small ; 19(22): e2300251, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36828799

RESUMEN

Spin crossover (SCO) complexes sensitively react on changes of the environment by a change in the spin of the central metallic ion making them ideal candidates for molecular spintronics. In particular, the composite of SCO complexes and ferromagnetic (FM) surfaces would allow spin-state switching of the molecules in combination with the magnetic exchange interaction to the magnetic substrate. Unfortunately, when depositing SCO complexes on ferromagnetic surfaces, spin-state switching is blocked by the relatively strong interaction between the adsorbed molecules and the surface. Here, the Fe(II) SCO complex [FeII (Pyrz)2 ] (Pyrz = 3,5-dimethylpyrazolylborate) with sub-monolayer thickness in contact with a passivated FM film of Co on Au(111) is studied. In this case, the molecules preserve thermal spin crossover and at the same time the high-spin species show a sizable exchange interaction of > 0.9 T with the FM Co substrate. These observations provide a feasible design strategy in fabricating SCO-FM hybrid devices.

11.
Small ; 19(39): e2303701, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37246252

RESUMEN

An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.

12.
Chemistry ; 29(19): e202203742, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36550089

RESUMEN

Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe8 Pd6 L8 ]28+ constructed using semi-rigid metalloligands, found that FeII centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the NiII analogue, 1 ([Fe8 Ni6 L8 (CH3 CN)12 ]28+ ). The distorted octahedral coordination environment, as well as the occupation of the CH3 CN in the NiII axial positions of 1, prevented close packing of cages observed in the PdII analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.

13.
Chemistry ; 29(44): e202300554, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37249393

RESUMEN

The field of anion supramolecular chemistry has received more and more attention in recent years. Anions with diverse types and geometries have been widely used for the synthesis of ionic spin crossover (SCO) complexes. This review is devoted to anion effects on the molecular, supramolecular structures and magnetic properties of discrete SCO compounds. Firstly, typical anions used in the synthesis of these compounds are briefly summarized according to their various geometries. This is followed by a collection of representative examples of anion-based SCO compounds, whose SCO properties are analyzed in terms of supramolecular interactions, geometry and charge of anions. In the third part, anion effects on SCO complexes of different kinds of metal centers and ligands are outlined and finally remarks on the synthesis new type of ionic SCO complexes in the future are described.

14.
Chemistry ; 29(46): e202300954, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37208296

RESUMEN

Combining metal complexes with amphiphilic molecules leads to a wide variety of functional self-assembled nanostructures. Metal complexes exhibiting spin transitions can be good candidates as the trigger to cause structural conversion of such assembly because they respond to various external stimuli. In this work, we studied a structural conversion of a supramolecular assembly containing a [Co2 Fe2 ] complex through a thermally induced electron transfer-coupled spin transition (ETCST). With an amphiphilic anion, the [Co2 Fe2 ] complex formed reverse vesicles in solution and showed thermal ETCST. In contrast, thermal ETCST in the presence of a bridging hydrogen-bond donor caused structural conversion from the reverse vesicle structure to entangled one-dimensional chains through hydrogen bond formation.

15.
Chemistry ; 29(9): e202202578, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36382594

RESUMEN

Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (µ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (µ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (µ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (µ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.

16.
Chemistry ; 29(39): e202300060, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37102788

RESUMEN

Herein, three dinuclear iron(II) helicates bearing the molecular formula [Fe2 (L1)3 ](ClO4 )4 ⋅ 2CH3 OH ⋅ 3H2 O (complex 1), [Fe2 (L2)3 ](ClO4 )4 ⋅ 6CH3 CN (complex 2), and [Fe2 (L3)3 ](ClO4 )4 ⋅ 0.5H2 O (complex 3) have been synthesized using imidazole and pyridine-imine-based ligands having fluorene moiety in the backbone. A change in the ligand field strength by terminal modulation led to a change in the spin-transition behaviour from incomplete, multi-step to complete, around room temperature in the solid state. Spin transition behaviour has also been observed in the solution phase characterized using variable temperature 1 H nuclear magnetic resonance spectroscopy (Evans method) and correlated using UV-visible spectroscopy. Fitting the NMR data using the ideal solution model yielded the transition temperature in the order T1/2 (1)

17.
Chemistry ; 29(37): e202300275, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37037023

RESUMEN

Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.

18.
Chemphyschem ; 24(24): e202300499, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37875788

RESUMEN

The partial oxidation reaction of CH4 led to the formation of CH3 OH in the presence of Ru-porphyrin oxo complexes (denoted as POR, POR-O and POR-OH where in the case of the last two, oxygen atom and the OH group were attached to the active site, respectively), in which Ru was present on different oxidation states. The simulations were performed based on Density Functional Theory (DFT) with extended geometric and electronic structure analyses of each reaction step. Moreover, the reaction pathways were investigated in different spin states. The Spin Crossover (SCO) phenomenon was found to play an important role in the kinetics of the reaction in the presence of POR and POR-O. Harmonic Oscillator Model of Aromaticity (HOMA) index was applied for different spin states to estimate the aromaticity changes of the pyrrole rings in the Ru-porphyrin complexes. In order to characterize the nature of bonding, the Natural Bond Orbitals (NBO) analysis including the Wiberg Bond Index (WBI) and Natural Population Analysis (NPA) was carried out. Finally, the Non-Covalent Interactions (NCI) index was employed to gain insight into interactions between the components of the reaction. It was found that the non-covalent interactions cannot be neglected in the studied reaction paths.

19.
Chemphyschem ; 24(2): e202200478, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36161748

RESUMEN

Molecular platforms are regarded as promising candidates in the generation of units of information for quantum computing. Herein, a strategy combining spin-crossover metal ions and radical ligands is proposed from a model Hamiltonian first restricted to exchange interactions. Unusual spin states structures emerge from the linkage of a singlet/triplet commutable metal centre with two doublet-radical ligands. The ground state nature is modulated by charge transfers and can exhibit a mixture of triplet and singlet local metal spin states. Besides, the superposition reaches a maximum for 2 K M = K 1 + K 2 ${2{K}_{M}={K}_{1}+{K}_{2}}$ , suggesting a necessary competition between the intramolecular K M ${{K}_{M}}$ and inter-metal-ligand K 1 ${{K}_{1}}$ and K 2 ${{K}_{2}}$ direct exchange interactions. The results promote spinmerism, an original manifestation of quantum entanglement between the spin states of a metal centre and radical ligands. The study provides insights into spin-coupled compounds and inspiration for the development of molecular spin-qubits.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Ligandos , Metales , Iones
20.
Adv Exp Med Biol ; 1414: 45-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520413

RESUMEN

Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.


Asunto(s)
Dioxigenasas , Oxidorreductasas , Humanos , Animales , Globinas , Nitratos , Citocromos b , NAD , Óxidos , Oxidación-Reducción , Mamíferos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda