Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050062

RESUMEN

High-threshold dorsal root ganglion (HT DRG) neurons fire at low frequencies during inflammatory injury, and low-frequency stimulation (LFS) of HT DRG neurons selectively potentiates excitatory synapses onto spinal neurons projecting to the periaqueductal gray (spino-PAG). Here, in male and female mice, we have identified an underlying peripheral sensory population driving this plasticity and its effects on the output of spino-PAG neurons. We provide the first evidence that Trpv1-lineage sensory neurons predominantly induce burst firing, a unique mode of neuronal activity, in lamina I spino-PAG projection neurons. We modeled inflammatory injury by optogenetically stimulating Trpv1+ primary afferents at 2 Hz for 2 min (LFS), as peripheral inflammation induces 1-2 Hz firing in high-threshold C fibers. LFS of Trpv1+ afferents enhanced the synaptically evoked and intrinsic excitability of spino-PAG projection neurons, eliciting a stable increase in the number of action potentials (APs) within a Trpv1+ fiber-induced burst, while decreasing the intrinsic AP threshold and increasing the membrane resistance. Further experiments revealed that this plasticity required Trpv1+ afferent input, postsynaptic G protein-coupled signaling, and NMDA receptor activation. Intriguingly, an inflammatory injury and heat exposure in vivo also increased APs per burst, in vitro These results suggest that inflammatory injury-mediated plasticity is driven though Trpv1+ DRG neurons and amplifies the spino-PAG pathway. Spinal inputs to the PAG could play an integral role in its modulation of heat sensation during peripheral inflammation, warranting further exploration of the organization and function of these neural pathways.


Asunto(s)
Interneuronas , Sustancia Gris Periacueductal , Ratas , Animales , Ratones , Femenino , Masculino , Ratas Sprague-Dawley , Células Receptoras Sensoriales , Inflamación , Canales Catiónicos TRPV/genética
2.
J Neurosci ; 44(4)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38124193

RESUMEN

K+-Cl- cotransporter-2 (KCC2) critically controls neuronal chloride homeostasis and maintains normal synaptic inhibition by GABA and glycine. Nerve injury diminishes synaptic inhibition in the spinal cord via KCC2 impairment. However, how KCC2 regulates nociceptive input to spinal excitatory and inhibitory neurons remains elusive. Here, we show that basal GABA reversal potentials were significantly more depolarized in vesicular GABA transporter (VGAT)-expressing inhibitory neurons than those in vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons in spinal cords of male and female mice. Strikingly, inhibiting KCC2 with VU0463271 increased currents elicited by puff NMDA and the NMDAR-mediated frequency of mEPSCs in VGluT2, but not in VGAT, dorsal horn neurons. Notably, VU0463271 had no effect on EPSCs monosynaptically evoked from the dorsal root in VGluT2 neurons. Furthermore, VU0463271 augmented α2δ-1-NMDAR interactions and their protein levels in spinal cord synaptosomes. In Cacna2d1 KO mice, VU0463271 had no effect on puff NMDA currents or the mEPSC frequency in dorsal horn neurons. Disrupting α2δ-1-NMDAR interactions with α2δ-1 C-terminus mimicking peptide diminished VU0463271-induced potentiation in the mEPSC frequency and puff NMDA currents in VGluT2 neurons. Additionally, intrathecal injection of VU0463271 reduced mechanical and thermal thresholds in wild-type mice, but not in Cacna2d1 KO mice. VU0463271-induced pain hypersensitivity in mice was abrogated by co-treatment with the NMDAR antagonist, pregabalin (an α2δ-1 inhibitory ligand), or α2δ-1 C-terminus mimicking peptide. Our findings suggest that KCC2 controls presynaptic and postsynaptic NMDAR activity specifically in excitatory dorsal horn neurons. KCC2 impairment preferentially potentiates nociceptive transmission between spinal excitatory interneurons via α2δ-1-bound NMDARs.Significance statementImpaired function of potassium-chloride cotransporter-2 (KCC2), a key regulator of neuronal inhibition, in the spinal cord plays a major role in neuropathic pain. This study unveils that KCC2 controls spinal nociceptive synaptic strength via NMDA receptors in a cell type- and synapse type-specific manner. KCC2 inhibition preferentially augments presynaptic and postsynaptic NMDA receptor activity in spinal excitatory interneurons via α2δ-1 (previously known as a calcium channel subunit). Importantly, spinal KCC2 impairment triggers pain hypersensitivity through α2δ-1-coupled NMDA receptors. These findings pinpoint the cell and molecular substrates for the reciprocal relationship between spinal synaptic inhibition and excitation in chronic neuropathic pain. Targeting both KCC2 and α2δ-1­NMDA receptor complexes could be an effective strategy in managing neuropathic pain conditions.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Simportadores , Animales , Femenino , Masculino , Ratones , Ácido gamma-Aminobutírico/metabolismo , N-Metilaspartato/farmacología , Péptidos/farmacología , Células del Asta Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sinapsis/metabolismo
3.
Biochem Biophys Res Commun ; 710: 149873, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583230

RESUMEN

Photobiomodulation (PBM) has attracted attention as a treatment for chronic pain. Previous studies have reported that PBM of the sciatic nerve inhibits neuronal firing in the superficial layers (lamina I-II) of the spinal dorsal horn of rats, which is evoked by mechanical stimulation that corresponds to noxious stimuli. However, the effects of PBM on the deep layers (lamina III-IV) of the spinal dorsal horn, which receive inputs from innocuous stimuli, remain poorly understood. In this study, we examined the effect of PBM of the sciatic nerve on firing in the deep layers of the spinal dorsal horn evoked by mechanical stimulation. Before and after PBM, mechanical stimulation was administered to the cutaneous receptive field using 0.6-26.0 g von Frey filaments (vFFs), and vFF-evoked firing in the deep layers of the spinal dorsal horn was recorded. The vFF-evoked firing frequencies were not altered after the PBM for any of the vFFs. The inhibition rate for 26.0 g vFF-evoked firing was approximately 13 % in the deep layers and 70 % in the superficial layers. This suggests that PBM selectively inhibits the transmission of pain information without affecting the sense of touch. PBM has the potential to alleviate pain while preserving the sense of touch.


Asunto(s)
Terapia por Luz de Baja Intensidad , Ratas , Animales , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Neuronas , Nervio Ciático , Dolor , Médula Espinal/fisiología
4.
Neurochem Res ; 49(2): 507-518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955815

RESUMEN

Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.


Asunto(s)
Neuralgia , Neuroliginas , Ratas , Animales , Regulación hacia Arriba , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/metabolismo , Células del Asta Posterior/metabolismo , Neuralgia/patología , Nervios Espinales , ARN Interferente Pequeño/metabolismo , Hiperalgesia/metabolismo , Médula Espinal/patología
5.
J Pharmacol Sci ; 156(3): 180-187, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39313276

RESUMEN

Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons in vivo demonstrated that bath application of AMI and DLX at concentrations of 0.1-1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.


Asunto(s)
Amitriptilina , Modelos Animales de Enfermedad , Clorhidrato de Duloxetina , Fibromialgia , Células del Asta Posterior , Ratas Sprague-Dawley , Reserpina , Animales , Clorhidrato de Duloxetina/farmacología , Amitriptilina/farmacología , Fibromialgia/tratamiento farmacológico , Fibromialgia/inducido químicamente , Células del Asta Posterior/efectos de los fármacos , Masculino , Ratas , Antidepresivos/farmacología , Relación Dosis-Respuesta a Droga
6.
J Pharmacol Sci ; 155(2): 63-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677787

RESUMEN

Remimazolam is an ultra-short benzodiazepine that acts on the benzodiazepine site of γ-aminobutyric acid (GABA) receptors in the brain and induces sedation. Although GABA receptors are found localized in the spinal dorsal horn, no previous studies have reported the analgesic effects or investigated the cellular mechanisms of remimazolam on the spinal dorsal horn. Behavioral measures, immunohistochemistry, and in vitro whole-cell patch-clamp recordings of dorsal horn neurons were used to assess synaptic transmission. Intrathecal injection of remimazolam induced behavioral analgesia in inflammatory pain-induced mechanical allodynia (six rats/dose; p < 0.05). Immunohistochemical staining revealed that remimazolam suppressed spinal phosphorylated extracellular signal-regulated kinase activation (five rats/group, p < 0.05). In vitro whole-cell patch-clamp analysis demonstrated that remimazolam increased the frequency of GABAergic miniature inhibitory post-synaptic currents, prolonged the decay time (six rats; p < 0.05), and enhanced GABA currents induced by exogenous GABA (seven rats; p < 0.01). However, remimazolam did not affect miniature excitatory post-synaptic currents or amplitude of monosynaptic excitatory post-synaptic currents evoked by Aδ- and C-fiber stimulation (seven rats; p > 0.05). This study suggests that remimazolam induces analgesia by enhancing GABAergic inhibitory transmission in the spinal dorsal horn, suggesting its potential utility as a spinal analgesic for inflammatory pain.


Asunto(s)
Benzodiazepinas , Células del Asta Posterior , Ratas Sprague-Dawley , Transmisión Sináptica , Animales , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Masculino , Transmisión Sináptica/efectos de los fármacos , Benzodiazepinas/farmacología , Técnicas de Placa-Clamp , Analgésicos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ratas , Inyecciones Espinales , Hiperalgesia/tratamiento farmacológico , Receptores de GABA/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
7.
Mol Biol Rep ; 51(1): 281, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324208

RESUMEN

BACKGROUND: Neuropathic pain, a complex condition originating from nervous system damage, remains a significant clinical challenge due to limited understanding of its underlying mechanisms. Recent research highlights the SOX11 transcription factor, known for its role in nervous system development, as a crucial player in neuropathic pain development and maintenance. This study investigates the role of the SOX11-ARID1A-SOCS3 pathway in neuropathic pain modulation within the spinal cord. METHODS AND RESULTS: Using a spinal nerve ligation (SNL) model in mice, we observed a significant upregulation of Sox11 in the spinal cord dorsal horn post-injury. Intrathecal administration of Sox11 shRNA mitigated SNL-induced neuropathic pain behaviors, including mechanical allodynia and heat hyperalgesia. Further, we demonstrated that Sox11 regulates neuropathic pain via transcriptional control of ARID1A, with subsequent modulation of SOCS3 expression. Knockdown of ARID1A and SOCS3 via shRNA resulted in alleviation of Sox11-induced pain sensitization. Additionally, Sox11 overexpression led to an increase in ARID1A binding to the SOCS3 promoter, enhancing chromatin accessibility and indicating a direct regulatory relationship. These findings were further supported by in vitro luciferase reporter assays and chromatin accessibility analysis. CONCLUSIONS: The SOX11-ARID1A-SOCS3 pathway plays a pivotal role in the development and maintenance of neuropathic pain. Sox11 acts as a master regulator, modulating ARID1A, which in turn influences SOCS3 expression, thereby contributing to the modulation of neuropathic pain. These findings provide a deeper understanding of the molecular mechanisms underlying neuropathic pain and highlight potential therapeutic targets for its treatment. The differential regulation of this pathway in the spinal cord and dorsal root ganglia (DRG) underscores its complexity and the need for targeted therapeutic strategies.


Asunto(s)
Proteínas de Unión al ADN , Neuralgia , Factores de Transcripción SOXC , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Ratones , Cromatina , Hiperalgesia , ARN Interferente Pequeño , Factores de Transcripción SOXC/genética , Médula Espinal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteínas de Unión al ADN/genética
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431693

RESUMEN

A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aß fibers. However, the mechanism by which Aß fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aß fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aß fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aß fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aß fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aß fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.


Asunto(s)
Interneuronas/fisiología , Neuralgia/genética , Asta Dorsal de la Médula Espinal/fisiología , Percepción del Tacto/fisiología , Animales , Hiperalgesia/genética , Hiperalgesia/patología , Masculino , Mecanorreceptores/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Nocicepción/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Asta Dorsal de la Médula Espinal/patología , Tacto/fisiología , Percepción del Tacto/genética , Ácido gamma-Aminobutírico/metabolismo
9.
J Physiol ; 601(18): 4121-4133, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598301

RESUMEN

Glycine receptors (GlyRs), together with GABAA receptors, mediate postsynaptic inhibition in most spinal cord and hindbrain neurons. In several CNS regions, GlyRs are also expressed in presynaptic terminals. Here, we analysed the effects of a phospho-deficient mutation (S346A) in GlyR α3 subunits on inhibitory synaptic transmission in superficial spinal dorsal horn neurons, where this subunit is abundantly expressed. Unexpectedly, we found that not only were the amplitudes of evoked glycinergic inhibitory postsynaptic currents (IPSCs) significantly larger in GlyRα3(S346A) mice than in mice expressing wild-type α3GlyRs (GlyRα3(WT) mice), but so were those of GABAergic IPSCs. Decreased frequencies of spontaneously occurring glycinergic and GABAergic miniature IPSCs (mIPSCs) with no accompanying change in mIPSC amplitudes suggested a change in presynaptic transmitter release. Paired-pulse experiments on glycinergic IPSCs revealed an increased paired-pulse ratio and a smaller coefficient of variation in GlyRα3(S346A) mice, which together indicate a reduction in transmitter release probability and an increase in the number of releasable vesicles. Paired-pulse ratios of GABAergic IPSCs recorded in the presence of strychnine were not different between genotypes, while the coefficient of variation was smaller in GlyRα3(S346A) mice, demonstrating that the decrease in release probability was readily reversible by GlyR blockade, while the difference in the size of the pool of releasable vesicles remained. Taken together, our results suggest that presynaptic α3 GlyRs regulate synaptic glycine and GABA release in superficial dorsal horn neurons, and that this effect is potentially regulated by their phosphorylation status. KEY POINTS: A serine-to-alanine point mutation was introduced into the glycine receptor α3 subunit of mice. This point mutation renders α3 glycine receptors resistant to protein kinase A mediated phosphorylation but has otherwise only small effects on receptor function. Patch-clamp recordings from neurons in mouse spinal cord slices revealed an unexpected increase in the amplitudes of both glycinergic and GABAergic evoked inhibitory postsynaptic currents (IPSCs). Miniature IPSCs, paired-pulse ratios and synaptic variation analyses indicate a change in synaptic glycine and GABA release. The results strongly suggest that α3 subunit-containing glycine receptors are expressed on presynaptic terminals of inhibitory dorsal horn neurons where they regulate transmitter release.


Asunto(s)
Glicina , Receptores de Glicina , Animales , Ratones , Ácido gamma-Aminobutírico , Mutación , Células del Asta Posterior , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmisión Sináptica
10.
Mol Pain ; 19: 17448069231158289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733258

RESUMEN

Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.


Asunto(s)
Neuralgia , Esclerosis Tuberosa , Animales , Ratas , Beclina-1/genética , Beclina-1/metabolismo , Beclina-1/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Epigénesis Genética , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/tratamiento farmacológico , Neuralgia/inducido químicamente , Neuralgia/genética , Neuralgia/tratamiento farmacológico , Oxaliplatino , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Esclerosis Tuberosa/metabolismo
11.
Mol Pain ; 19: 17448069231178487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37211783

RESUMEN

Recently, epigenetics involved in the regulation of gene expression has become a research hotspot. This study evaluated N4-acetylcytidine (ac4c) RNA acetylation in the spinal dorsal horn (SDH) of rats with cancer-induced bone pain (CIBP). The ac4C-specific RIP sequencing and NAT10-specific RIP sequencing were performed to identify the differences in ac4C acetylation and gene expression in the SDH between CIBP and sham groups, the relationship with the acetylation-modifying enzyme NAT10, and association analysis was performed. By interfering with the NAT10 expression, the relationship between some up-regulated genes and ac4C acetylation in CIBP was verified. In this study, we demonstrated that bone cancer increases the levels of NAT10 and the overall acetylation, inducing differential ac4C patterns in the SDH of rats. Through verification experiments, it was found that ac4C acetylation of some genes is regulated by NAT10, and differential ac4C patterns in RNA determine the expression of this RNA. We exposed that some CIBP-related gene expression was altered in the SDH of rats, which was regulated by differentially expressed ac4C acetylation.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Ratas , Animales , Acetilación , ARN/metabolismo , Dolor en Cáncer/genética , Dolor en Cáncer/complicaciones , Neoplasias Óseas/complicaciones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo
12.
Mol Pain ; 19: 17448069231161031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938611

RESUMEN

Bone cancer pain (BCP) is severe chronic pain caused by tumor metastasis to the bones, often resulting in significant skeletal remodeling and fractures. Currently, there is no curative treatment. Therefore, insight into the underlying mechanisms could guide the development of mechanism-based therapeutic strategies for BCP. We speculated that Rac1/PAK1 signaling plays a critical role in the development of BCP. Tumor cells implantation (TCI) into the tibial cavity resulted in bone cancer-associated mechanical allodynia. Golgi staining revealed changes in the excitatory synaptic structure of WDR (Wide-dynamic range) neurons in the spinal cord, including increased postsynaptic density (PSD) length and thickness, and width of the cleft. Behavioral and western blotting test revealed that the development and persistence of pain correlated with Rac1/PAK1 signaling activation in primary sensory neurons. Intrathecal injection of NSC23766, a Rac1 inhibitor, reduced the persistence of BCP as well as reversed the remodeling of dendrites. Therefore, we concluded that activation of the Rac1/PAK1 signaling pathway in the spinal cord plays an important role in the development of BCP through remodeling of dendritic spines. Modulation of the Rac1/PAK1 pathway may be a potential strategy for BCP treatment.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Ratas , Animales , Dolor en Cáncer/patología , Espinas Dendríticas/metabolismo , Ratas Sprague-Dawley , Dolor/patología , Neoplasias Óseas/complicaciones , Neoplasias Óseas/patología , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
13.
Mol Pain ; 19: 17448069231159855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760008

RESUMEN

Previous studies have confirmed the relationship between chloride homeostasis and pain. However, the role of sodium potassium chloride co-transporter isoform 1 (NKCC1) in dorsal horn and dorsal root ganglion neurons (DRGs) in spinal cord injury (SCI)-induced neuropathic pain (NP) remains inconclusive. Therefore, we aimed to explore whether suppression of NKCC1 in the spinal cord and DRGs alleviate the NP of adult rats with thoracic spinal cord contusion. Thirty adult female Sprague-Dawley rats (8 week-old, weighing 250-280 g) were randomly divided into three groups with ten animals in each group (sham, SCI, and bumetanide groups). The paw withdrawal mechanical threshold and paw withdrawal thermal latency were recorded before injury (baseline) and on post-injury days 14, 21, 28, and 35. At the end of experiment, western blotting (WB) analysis, quantitative real-time Polymerase Chain Reaction (PCR) and immunofluorescence were performed to quantify NKCC1 expression. Our results revealed that NKCC1 protein expression in the spinal cord and DRGs was significantly up-regulated in rats with SCI. Intraperitoneal treatment of bumetanide (an NKCC1 inhibitor) reversed the expression of NKCC1 in the dorsal horn and DRGs and ameliorated mechanical ectopic pain and thermal hypersensitivities in the SCI rats. Our study demonstrated the occurrence of NKCC1 overexpression in the spinal cord and DRGs in a rodent model of NP and indicated that changes in the peripheral nervous system also play a major role in promoting pain sensitization after SCI.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Bumetanida/metabolismo , Bumetanida/farmacología , Ganglios Espinales/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Hiperalgesia/metabolismo
14.
Biochem Biophys Res Commun ; 682: 97-103, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37804593

RESUMEN

Due to its complex pathological mechanisms, bone cancer pain (BCP) has become an increasingly challenging clinical issue, there is an urgent need to identify the underlying mechanisms of BCP. In our present study, we found that decreased expression of miR-199a-3p in spinal dorsal horn (SDH) neurons contributed to BCP hypersensitivity. Intrathecal administration of miR-199a-3p agomir alleviated the initiation of tumor inoculation induced pain hypersensitivity and suppressed the expression of DNMT3A. Subsequently, luciferase assays confirmed direct binding between miR-199a-3p and Dnmt3a mRNA. AAV-DNMT3A-shRNA microinjection relieved mechanical hyperalgesia and upregulated the expression of Nrf2 levels in BCP. In naïve rats, Overexpression of DNMT3A yielded the opposite effects. Finally, increase of DNMT3A by lentiviral vector abolished miR-199a-3p-mediated alleviation hypersensitivity effects on BCP progression. Taken these together, our findings highlighted a novel contribution of miR-199a-3p to BCP and provided a fresh outlook on potential mechanism research for BCP.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , MicroARNs , Osteosarcoma , Ratas , Animales , Dolor en Cáncer/genética , Dolor en Cáncer/metabolismo , Regulación hacia Arriba , Dolor/metabolismo , Neoplasias Óseas/complicaciones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Células del Asta Posterior/metabolismo , Osteosarcoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
15.
Neurochem Res ; 48(12): 3652-3664, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592110

RESUMEN

Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.


Asunto(s)
Metilación de ADN , Neuralgia , Regulación hacia Abajo , Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Oxaliplatino/efectos adversos , ARN Interferente Pequeño/uso terapéutico , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Ratas
16.
Neurochem Res ; 48(1): 229-237, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36064821

RESUMEN

Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.


Asunto(s)
MicroARNs , Neuralgia , Ratas , Animales , Bortezomib , Regulación hacia Arriba , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Asta Dorsal de la Médula Espinal/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , MicroARNs/metabolismo
17.
Biol Pharm Bull ; 46(8): 1128-1132, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37331804

RESUMEN

The anticancer drug oxaliplatin is associated with peripheral neuropathy as a side effect accompanied by mechanical and cold allodynia. Although the superficial layer of the spinal cord dorsal horn is known to receive information primarily from peripheral pain nerves, to our knowledge, no in vivo electrophysiological analyses have been conducted to determine whether oxaliplatin administration increases the excitability of superficial layer neurons. Therefore, in vivo extracellular recordings were performed to measure action potentials in the deep and superficial layers of the spinal cord dorsal horn in rats treated with a single dose (6 mg/kg) of oxaliplatin. Action potentials were produced by mechanical stimulation with von Frey filaments to the hindlimb receptive fields. The results revealed that the firing frequency of action potentials increased relative to the intensity of mechanical stimulation, and that both deep and superficial layer neurons in the spinal cord dorsal horn increased significantly in oxaliplatin-treated compared with vehicle-treated rats, especially in the superficial layer. Several superficial layer neurons showed spontaneous firing that was not seen in vehicle-treated rats. In addition, a clear increase was seen in the firing frequency of neurons in the superficial layer of oxaliplatin-treated rats in response to a cold stimulus (here, the addition of acetone to the hindlimb receptive field). This study suggests that the superficial spinal cord dorsal horn strongly reflects the pain pathophysiology in peripheral neuropathy induced by oxaliplatin administration, and that the superficial layer neurons are useful for in vivo electrophysiological analysis using this pathological model.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Oxaliplatino/efectos adversos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Dolor/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Antineoplásicos/toxicidad , Médula Espinal
18.
Chin J Physiol ; 66(3): 144-152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322625

RESUMEN

Skin/muscle incision and retraction (SMIR) during surgeries can lead to chronic postsurgical pain (CPSP). The underlying mechanisms are still unclear. In the present study, we showed that SMIR of the thigh induced phosphorylation of extracellular signal-regulated kinase (ERK), followed by serum- and glucocorticoid-inducible kinase-1 (SGK1) activation in the spinal dorsal horn. Intrathecal injection of PD98059, an ERK inhibitor, or GSK650394, a SGK1 inhibitor, significantly attenuated mechanical pain hypersensitivity in SMIR rats. The level of tumor necrosis factor α and lactate in spinal cord was significantly decreased by PD98059 or GSK650394 injection. Furthermore, PD98059 decreased the activation of SGK1 in the spinal dorsal horn. These results indicate that ERK-SGK1 activation followed by proinflammatory mediator release in the spinal dorsal horn underlies CPSP.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Factor de Necrosis Tumoral alfa , Ratas , Animales , Ratas Sprague-Dawley , Hiperalgesia , Ácido Láctico , Dolor Postoperatorio , Asta Dorsal de la Médula Espinal , Médula Espinal
19.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108107

RESUMEN

A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Células del Asta Posterior , Humanos , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Células del Asta Posterior/metabolismo , Neuronas/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Dolor/metabolismo , Médula Espinal/metabolismo
20.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768673

RESUMEN

Photobiomodulation has analgesic effects via inhibition of nerve activity, but few reports have examined the effects on the spinal dorsal horn, the entry point for nociceptive information in the central nervous system. In this study, we evaluated the effects of laser irradiation of peripheral nerve axons, which are conduction pathways for nociceptive stimuli, on the neuronal firing in lamina II of the spinal dorsal horn of a rat evoked by mechanical stimulation with von Frey filaments (vFF). In order to record neuronal firing, electrodes were inserted into lamina II of the exposed rat spinal dorsal horn. The exposed sciatic nerve axons were irradiated with an 808 nm laser. The 26.0 g vFF-evoked firing frequency was inhibited from 5 min after laser irradiation and persisted for 3 h. Sham irradiation did not alter the firing frequency. Laser irradiation selectively inhibited 15.0 and 26.0 g vFF-evoked firing, which corresponded to nociceptive stimuli. Histopathological evaluation revealed no damage to the sciatic nerve due to laser irradiation. These results indicate that neuronal firing is inhibited in lamina II of the spinal dorsal horn, suggesting that laser irradiation inhibits Aδ and/or C fibers that conduct nociceptive stimuli.


Asunto(s)
Neuronas , Asta Dorsal de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/fisiología , Nervio Ciático , Axones , Células del Asta Posterior/metabolismo , Médula Espinal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda