Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Physiol ; 602(16): 4027-4052, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031516

RESUMEN

Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.


Asunto(s)
Tronco Encefálico , Neuronas , Ratas Sprague-Dawley , Núcleo Solitario , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Masculino , Ratas , Tronco Encefálico/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Neuronas/fisiología , Núcleo Solitario/fisiología , Nervio Vago/fisiología
2.
Brain Behav Immun ; 106: 129-146, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36038077

RESUMEN

The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1ß, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuralgia , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Sensibilización del Sistema Nervioso Central , Dolor Facial/metabolismo , Dolor Facial/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hiperalgesia/metabolismo , Ligandos , Ratones , Neuralgia/patología , Canales de Potasio , Receptores de N-Metil-D-Aspartato , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Headache Pain ; 23(1): 9, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033014

RESUMEN

BACKGROUND: The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. METHODS: Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. RESULTS: Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. CONCLUSIONS: These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.


Asunto(s)
Corteza Prefontal Dorsolateral , Trastornos Migrañosos , Encéfalo/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Trastornos Migrañosos/diagnóstico por imagen , Dolor
4.
J Neurophysiol ; 125(1): 223-231, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326336

RESUMEN

This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1ß, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 µM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1ß, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1ß, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1ß, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.


Asunto(s)
Lesiones del Nervio Mandibular/metabolismo , Dolor/tratamiento farmacológico , Receptores de Oxitocina/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canfanos/farmacología , Interleucina-1beta/metabolismo , Masculino , Lesiones del Nervio Mandibular/fisiopatología , Oxitocina/metabolismo , Oxitocina/uso terapéutico , Dolor/etiología , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917574

RESUMEN

The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Tronco Encefálico/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Neuronas/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Núcleo Espinal del Trigémino/metabolismo , Animales , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Femenino , Masculino , Ratones , Piperazinas/farmacología , Quinazolinas/farmacología
6.
Cephalalgia ; 40(5): 448-460, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32164427

RESUMEN

BACKGROUND: There is evidence of altered resting hypothalamic activity patterns and connectivity prior to a migraine, however it remains unknown if these changes are driven by changes in overall hypothalamic activity levels. If they are, it would corroborate the idea that changes in hypothalamic function result in alteration in brainstem pain processing sensitivity, which either triggers a migraine headache itself or allows an external trigger to initiate a migraine headache. We hypothesise that hypothalamic activity increases immediately prior to a migraine headache and this is accompanied by altered functional connectivity to pain processing sites in the brainstem. METHODS: In 34 migraineurs and 26 healthy controls, we collected a series comprising 108 pseudo-continuous arterial spin labelling images and 180 gradient-echo echo planar resting-state functional magnetic resonance volumes to measure resting regional cerebral blood flow and functional connectivity respectively. Images were pre-processed and analysed using custom SPM12 and Matlab software. RESULTS: Our results reflect that immediately prior to a migraine headache, resting regional cerebral blood flow decreases in the lateral hypothalamus. In addition, resting functional connectivity strength decreased between the lateral hypothalamus and important regions of the pain processing pathway, such as the midbrain periaqueductal gray, dorsal pons, rostral ventromedial medulla and cingulate cortex, only during this critical period before a migraine headache. CONCLUSION: These data suggest altered hypothalamic function and connectivity in the period immediately prior to a migraine headache and supports the hypothesis that the hypothalamus is involved in migraine initiation.


Asunto(s)
Circulación Cerebrovascular/fisiología , Hipotálamo/fisiopatología , Trastornos Migrañosos/fisiopatología , Vías Nerviosas/fisiopatología , Adulto , Tronco Encefálico/fisiopatología , Femenino , Humanos , Hipotálamo/irrigación sanguínea , Imagen por Resonancia Magnética , Masculino
7.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516986

RESUMEN

Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of nitroglycerin (NTG)-induced migraine-like hypersensitivity in mice. Facial mechanical allodynia, functional allodynia, and light-aversive behavior were evaluated. Sumatriptan, an FDA-approved medication for migraine, was used to validate migraine-like hypersensitivity. Additionally, we examined the protein level of calcitonin gene-related peptide (CGRP) in the spinal trigeminal nucleus caudalis using immunohistochemistry. We observed that mice with MMTL pretreatment have a prolonged NTG-induced migraine-like hypersensitivity, and MMTL also enabled a non-sensitizing dose of NTG to trigger migraine-like hypersensitivity. Systemic injection of sumatriptan inhibited the MMTL-enhanced migraine-like hypersensitivity. MMTL pretreatment significantly upregulated the protein level of CGRP in the spinal trigeminal nucleus caudalis after NTG injection. Our results indicate that a pre-existing myogenic TMD can upregulate NTG-induced trigeminal CGRP and enhance migraine-like hypersensitivity.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Nitroglicerina/efectos adversos , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/metabolismo , Nervio Trigémino/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica/métodos , Masculino , Ratones , Trastornos Migrañosos/etiología , Trastornos Migrañosos/metabolismo , Ratas , Trastornos de la Articulación Temporomandibular/diagnóstico
8.
J Neurosci ; 38(2): 465-473, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29175957

RESUMEN

Preclinical investigations have suggested that altered functioning of brainstem pain-modulation circuits may be crucial for the maintenance of some chronic pain conditions. While some human psychophysical studies show that patients with chronic pain display altered pain-modulation efficacy, it remains unknown whether brainstem pain-modulation circuits are altered in individuals with chronic pain. The aim of the present investigation was to determine whether, in humans, chronic pain following nerve injury is associated with altered ongoing functioning of the brainstem descending modulation systems. Using resting-state functional magnetic resonance imaging, we found that male and female patients with chronic neuropathic orofacial pain show increased functional connectivity between the rostral ventromedial medulla (RVM) and other brainstem pain-modulatory regions, including the ventrolateral periaqueductal gray (vlPAG) and locus ceruleus (LC). We also identified an increase in RVM functional connectivity with the region that receives orofacial nociceptor afferents, the spinal trigeminal nucleus. In addition, the vlPAG and LC displayed increased functional connectivity strengths with higher brain regions, including the hippocampus, nucleus accumbens, and anterior cingulate cortex, in individuals with chronic pain. These data reveal that chronic pain is associated with altered ongoing functioning within the endogenous pain-modulation network. These changes may underlie enhanced descending facilitation of processing at the primary synapse, resulting in increased nociceptive transmission to higher brain centers. Further, our findings show that higher brain regions interact with the brainstem modulation system differently in chronic pain, possibly reflecting top-down engagement of the circuitry alongside altered reward processing in pain conditions.SIGNIFICANCE STATEMENT Experimental animal models and human psychophysical studies suggest that altered functioning of brainstem pain-modulation systems contributes to the maintenance of chronic pain. However, the function of this circuitry has not yet been explored in humans with chronic pain. In this study, we report that individuals with orofacial neuropathic pain show altered functional connectivity between regions within the brainstem pain-modulation network. We suggest that these changes reflect largely central mechanisms that feed back onto the primary nociceptive synapse and enhance the transfer of noxious information to higher brain regions, thus contributing to the constant perception of pain. Identifying the mechanisms responsible for the maintenance of neuropathic pain is imperative for the development of more efficacious therapies.


Asunto(s)
Tronco Encefálico/fisiopatología , Dolor Crónico/fisiopatología , Vías Nerviosas/fisiopatología , Neuralgia/fisiopatología , Enfermedades del Nervio Trigémino/fisiopatología , Adulto , Anciano , Encéfalo/fisiopatología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
9.
J Neurosci ; 38(49): 10479-10488, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341182

RESUMEN

The neural mechanism responsible for migraine remains unclear. While an external trigger has been proposed to initiate a migraine, it has also been proposed that changes in brainstem function are critical for migraine headache initiation and maintenance. Although the idea of altered brainstem function has some indirect support, no study has directly measured brainstem pain modulation circuitry function in migraineurs particularly immediately before a migraine. In male and female humans, we performed fMRI in 31 controls and 31 migraineurs at various times in their migraine cycle. We measured brainstem function during noxious orofacial stimulation and assessed resting-state functional connectivity. First, we found that, in individual migraineurs, pain sensitivity increased over the interictal period but then dramatically decreased immediately before a migraine. Second, despite overall similar pain intensity ratings between groups, in the period immediately before a migraine, compared with controls and other migraine phases, migraineurs displayed greater activation in the spinal trigeminal nucleus during noxious orofacial stimulation and reduced functional connectivity of this region with the rostral ventromedial medulla. Additionally, during the interictal phase, migraineurs displayed reduced activation of the midbrain periaqueductal gray matter and enhanced periaqueductal gray connectivity with the rostral ventromedial medulla. These data support the hypothesis that brainstem sensitivity fluctuates throughout the migraine cycle. However, in contrast to the prevailing hypothesis, our data suggest that, immediately before a migraine attack, endogenous analgesic mechanisms are enhanced and incoming noxious inputs are less likely to reach higher brain centers.SIGNIFICANCE STATEMENT It has been hypothesized that alterations in brainstem function are critical for the generation of migraine. In particular, modulation of orofacial pain pathways by brainstem circuits alters the propensity of external triggers or ongoing spontaneous activity to evoke a migraine attack. We sought to obtain empirical evidence to support this theory. Contrary to our hypothesis, we found that pain sensitivity decreased immediately before a migraine, and this was coupled with increased sensitivity of the spinal trigeminal nucleus to noxious stimuli. We also found that resting connectivity within endogenous pain modulation circuitry alters across the migraine cycle. These changes may reflect enhanced and diminished neural tone states proposed to be critical for the generation of a migraine and underlie cyclic fluctuations in migraine brainstem sensitivity.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/fisiología , Trastornos Migrañosos/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Dolor/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/fisiopatología , Dolor/fisiopatología , Umbral del Dolor/fisiología , Adulto Joven
10.
Biochem Biophys Res Commun ; 512(4): 705-711, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30922564

RESUMEN

Neurons of the parabrachial nucleus (PB) receive nociceptive input from the dorsal horn (DH) of the spinal cord and caudal part of the spinal trigeminal nucleus (Vc). Previously, we demonstrated that glutamatergic lateral PB neurons innervate orexin (ORX) neurons in the perifornical area (PeF) of the hypothalamus. However, the neural circuit via which ORX neurons receive nociceptive input from the DH and brainstem remains to be determined. In the present study, we aimed to clarify the potential nociceptive circuit from DH/Vc to PeF via lateral PB. We first examined the neuronal activity of fluorogold (FG)-labeled, PeF-projecting lateral PB neurons in Wistar rats following either saline or formalin injection to the forepaw or lips. We clearly detected more abundant c-Fos-positive, FG-labeled neurons in the PB nucleus. To investigate the relay from the DH/Vc to the PeF via the lateral PB, we injected FG into the PeF and biotinylated dextranamine (BDA) into the contralateral DH or ipsilateral Vc. We observed the most prominent overlap between BDA-labeled axon terminals and FG-labeled neurons in the dorsal lateral and central lateral subnuclei. Furthermore, we found that FG-labeled neurons formed close contact sites with BDA-labeled axons with synaptophysin immunoreactivity. Using electron microscopy, we confirmed that these contact sites were truly synapses. Taken together, our results indicate that the DH/Vc transmits nociceptive information to the PeF via the lateral PB, suggesting the involvement of ORX neurons in the pain pathway.


Asunto(s)
Hipotálamo/fisiología , Vías Nerviosas , Nociceptores/fisiología , Núcleos Parabraquiales/fisiología , Médula Espinal/fisiología , Núcleo Espinal del Trigémino/fisiología , Animales , Masculino , Red Nerviosa , Ratas Wistar
11.
Cephalalgia ; 39(7): 892-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30836766

RESUMEN

OBJECTIVE: To investigate the functional connectivity of the hypothalamus in chronic migraine compared to interictal episodic migraine in order to improve our understanding of migraine chronification. METHODS: Using task-free fMRI and ROI-to-ROI analysis, we compared anterior hypothalamus intrinsic connectivity with the spinal trigeminal nucleus in patients with chronic migraine (n = 25) to age- and sex-matched patients with episodic migraine in the interictal phase (n = 22). We also conducted a seed-to-voxel analysis with anterior hypothalamus as a seed. RESULTS: All patients with chronic migraine had medication overuse. We found a significant connectivity (T = 2.08, p = 0.024) between anterior hypothalamus and spinal trigeminal nucleus in the chronic group, whereas these two regions were not connected in the episodic group. The strength of connectivity was not correlated with pain intensity (rho: 0.09, p = 0.655). In the seed-to-voxel analysis, three regions were more connected with the anterior hypothalamus in the chronic group: The spinal trigeminal nuclei (MNI coordinate x = 2, y = -44, z = -62), the right dorsal anterior insula (MNI coordinate x = 10, y = 10, z = 18), and the right caudate (MNI coordinate x = 12, y = 28, z = 6). However, these correlations were no longer significant after whole brain FWE correction. CONCLUSION: An increased functional connectivity between the anterior hypothalamus and the spinal trigeminal nucleus, as previously reported in preictal episodic migraine, was demonstrated in chronic migraine with medication overuse. This finding confirms a major role of the anterior hypothalamus in migraine and suggests that chronic migraineurs are locked in the preictal phase.


Asunto(s)
Hipotálamo/fisiopatología , Trastornos Migrañosos/fisiopatología , Vías Nerviosas/fisiopatología , Uso Excesivo de Medicamentos Recetados , Núcleo Espinal del Trigémino/fisiopatología , Adulto , Femenino , Trastornos de Cefalalgia/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
12.
Hum Brain Mapp ; 39(6): 2651-2663, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498776

RESUMEN

The neural mechanism responsible for migraine remains unclear. While the role of an external trigger in migraine initiation remains vigorously debated, it is generally assumed that migraineurs display altered brain function between attacks. This idea stems from relatively few brain imaging studies with even fewer studies exploring changes in the 24 h period immediately prior to a migraine attack. Using functional magnetic resonance imaging, we measured infra-slow oscillatory activity, regional homogeneity, and connectivity strengths of resting activity in migraineurs directly before (n = 8), after (n = 11), and between migraine attacks (n = 26) and in healthy control subjects (n = 78). Comparisons between controls and each migraine group and between migraine groups were made for each of these measures. Directly prior to a migraine, increased infra-slow oscillatory activity occurred in brainstem and hypothalamic regions that also display altered activity during a migraine itself, that is, the spinal trigeminal nucleus, dorsal pons, and hypothalamus. Furthermore, these midbrain and hypothalamic sites displayed increased connectivity strengths and regional homogeneity directly prior to a migraine. Remarkably, these resting oscillatory and connectivity changes did not occur directly after or between migraine attacks and were significantly different to control subjects. These data provide evidence of altered brainstem and hypothalamic function in the period immediately before a migraine and raise the prospect that such changes contribute to the expression of a migraine attack.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiopatología , Trastornos Migrañosos/patología , Vías Nerviosas/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen
13.
Cephalalgia ; 38(3): 476-486, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28952339

RESUMEN

Background The exact mechanisms responsible for migraine remain unknown, although it has been proposed that changes in brainstem anatomy and function, even between attacks, may contribute to the initiation and maintenance of headache during migraine attacks. The aim of this investigation is to use brainstem-specific analyses of anatomical and diffusion weighted images to determine if the trigeminal system displays altered structure in individuals with migraine. Methods Voxel-based morphometry of T1-weighted anatomical images (57 controls, 24 migraineurs) and diffusion tensor images (22 controls, 24 migraineurs) were used to assess brainstem anatomy in individuals with migraine compared with controls. Results We found grey matter volume decreases in migraineurs in the spinal trigeminal nucleus and dorsomedial pons. In addition, reduced grey matter volume and increased free water diffusivity occurred in areas of the descending pain modulatory system, including midbrain periaqueductal gray matter, dorsolateral pons, and medullary raphe. These changes were not correlated to migraine frequency, duration, intensity or time to next migraine. Conclusion Brainstem anatomy changes may underlie changes in activity that result in activation of the ascending trigeminal pathway and the perception of head pain during a migraine attack.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/patología , Adulto , Imagen de Difusión Tensora , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Masculino
14.
J Neurosci ; 36(3): 1008-18, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791228

RESUMEN

The neural mechanisms underlying the development and maintenance of chronic neuropathic pain remain unclear. Evidence from human investigations suggests that neuropathic pain is associated with altered thalamic burst firing and thalamocortical dysrhythmia. Additionally, experimental animal investigations show that neuropathic pain is associated with altered infra-slow (<0.1 Hz) frequency oscillations within the dorsal horn and somatosensory thalamus. The aim of this investigation was to determine whether, in humans, neuropathic pain was also associated with altered infra-slow oscillations within the ascending "pain" pathway. Using resting-state functional magnetic resonance imaging, we found that individuals with orofacial neuropathic pain have increased infra-slow oscillatory activity throughout the ascending pain pathway, including within the spinal trigeminal nucleus, somatosensory thalamus, thalamic reticular nucleus, and primary somatosensory cortex. Furthermore, these infra-slow oscillations were temporally coupled across these multiple sites and occurred at frequencies similar to calcium waves in activated astrocytes. The region encompassing the spinal trigeminal nucleus also displayed increased regional homogeneity, consistent with a local spread of neural activity by astrocyte activation. In contrast, no increase in oscillatory behavior within the ascending pain pathway occurred during acute noxious stimuli in healthy individuals. These data reveal increased oscillatory activity within the ascending pain pathway that likely underpins increased thalamocortical oscillatory activity, a self-sustaining thalamocortical dysrhythmia, and the constant perception of pain. Significance statement: Chronic neuropathic pain is associated with altered thalamic firing and thalamocortical dysrhythmia. The mechanisms responsible for these changes remain unknown. In this study, we report in individuals with neuropathic pain increased oscillatory neural activity within the ascending pain pathway with evidence that these changes result from altered neural-astrocyte coupling. We propose a series of neural and glial events after nerve injury that result in the generation of altered thalamocortical activity and a persistent neuropathic pain state. Defining the underlying mechanisms responsible for neuropathic pain is critical if we are to develop more effective treatment regimens.


Asunto(s)
Dolor Crónico/fisiopatología , Imagen por Resonancia Magnética/métodos , Neuralgia/fisiopatología , Dimensión del Dolor/métodos , Periodicidad , Adulto , Dolor Crónico/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Neuralgia/diagnóstico
15.
Cephalalgia ; 37(11): 1026-1038, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27521844

RESUMEN

Background Impaired sensory processing in migraine can reflect diminished habituation, increased activation, or even increased gain or amplification of activity from the primary synapse in the brainstem to higher cortical/subcortical brain regions. Methods We scanned 16 episodic migraine (interictal) and 16 healthy controls (cross-sectional study), and evaluated brain response to innocuous air-puff stimulation over the right forehead in the ophthalmic nerve (V1) trigeminal territory. We further evaluated habituation, and cortical/subcortical amplification relative to spinal trigeminal nucleus (Sp5) activation. Results Migraine subjects showed greater amplification from Sp5 to the posterior insula and hypothalamus. In addition, while controls showed habituation to repetitive sensory stimulation in all activated cortical regions (e.g. the bilateral posterior insula and secondary somatosensory cortices), for migraine subjects, habituation was not found in the posterior insula. Moreover, in migraine, the habituation slope was correlated with the amplification ratio in the posterior insula and secondary somatosensory cortex, i.e. greater amplification was associated with reduced habituation in these regions. Conclusions These findings suggest that in episodic migraine, amplified information processing from spinal trigeminal relay nuclei is linked to an impaired habituation response. This phenomenon was localized in the posterior insula, highlighting the important role of this structure in mechanisms supporting altered sensory processing in episodic migraine.


Asunto(s)
Tronco Encefálico/fisiopatología , Corteza Cerebral/fisiopatología , Habituación Psicofisiológica/fisiología , Trastornos Migrañosos/fisiopatología , Adulto , Estudios Transversales , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nervio Trigémino/fisiopatología
16.
Bull Exp Biol Med ; 160(4): 425-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26899844

RESUMEN

Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.


Asunto(s)
Duramadre/efectos de la radiación , Estimulación Eléctrica/métodos , Radiación Electromagnética , Trastornos Migrañosos/terapia , Neuronas/efectos de la radiación , Núcleo Espinal del Trigémino/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
17.
Cell Stem Cell ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39208804

RESUMEN

Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Despite its essential role in vital body functions, the medulla of the hindbrain has seen a lack of in vitro models, let alone models resembling specific medullary nuclei, including the crucial spinal trigeminal nucleus (SpV) that relays peripheral sensory signals to the thalamus. Here, we report a method to differentiate human pluripotent stem cells into region-specific brain organoids resembling the dorsal domain of the medullary hindbrain. Importantly, organoids specifically recapitulated the development of the SpV derived from the dorsal medulla. We also developed an organoid system to create the trigeminothalamic projections between the SpV and the thalamus by fusing these organoids, namely human medullary SpV-like organoids (hmSpVOs), with organoids representing the thalamus (hThOs). Our study provides a platform for understanding SpV development, nucleus-based circuit organization, and related disorders in the human brain.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38508408

RESUMEN

Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.


Asunto(s)
Cannabidiol , Neuralgia , Neuralgia del Trigémino , Animales , Masculino , Ratas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Dolor Facial/metabolismo , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Ratas Wistar , Neuralgia del Trigémino/complicaciones , Neuralgia del Trigémino/tratamiento farmacológico
19.
Prog Neurobiol ; 232: 102561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142769

RESUMEN

Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.


Asunto(s)
Hiperalgesia , Núcleo Espinal del Trigémino , Humanos , Hiperalgesia/metabolismo , Núcleo Espinal del Trigémino/metabolismo , Dolor , Bulbo Raquídeo/metabolismo , Neuronas GABAérgicas/metabolismo
20.
Life Sci ; 336: 122283, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993094

RESUMEN

Chronic temporomandibular joint (TMJ) pain profoundly affects patients' quality of life. Trigeminal tumor necrosis factor-α (TNFα) plays a pivotal role in mediating TMJ pain in mice, yet the underlying epigenetic mechanisms remain enigmatic. To unravel these epigenetic intricacies, we employed a multifaceted approach. Hydroxymethylated DNA immunoprecipitation (hMeDIP) and chromatin immunoprecipitation (ChIP) followed by qPCR were employed to investigate the demethylation of TNFα gene (Tnfa) and its regulation by ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in a chronic TMJ pain mouse model. The global levels of 5-hydroxymethylcytosine (5hmc) and percentage of 5hmc at the Tnfa promoter region were measured in the trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) following complete Freund's adjuvant (CFA) or saline treatment. TET1 knockdown and pain behavioral testing were conducted to ascertain the role of TET1-mediated epigenetic regulation of TNFα in the pathogenesis of chronic TMJ pain. Our finding revealed an increase in 5hmc at the Tnfa promoter region in both TG and Sp5C of CFA-treated mice. TET1 was upregulated in the mouse TG, and the ChIP result showed TET1 direct binding to the Tnfa promoter, with higher efficiency in the CFA-treated group. Immunofluorescence revealed the predominant expression of TET1 in trigeminal neurons. TET1 knockdown in the TG significantly reversed CFA-induced TNFα upregulation and alleviated chronic TMJ pain. In conclusion, our study implicates TET1 as a vital epigenetic regulator contributing to chronic inflammatory TMJ pain via trigeminal TNFα signaling. Targeting TET1 holds promise for epigenetic interventions in TMJ pain management.


Asunto(s)
Artralgia , Proteínas de Unión al ADN , Articulación Temporomandibular , Ganglio del Trigémino , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Epigénesis Genética/genética , Proteínas de Unión al ADN/metabolismo , Ganglio del Trigémino/fisiopatología , Artralgia/inducido químicamente , Artralgia/fisiopatología , Articulación Temporomandibular/fisiopatología , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Adyuvante de Freund/farmacología , Regulación hacia Arriba/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Silenciamiento del Gen , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda