Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323986

RESUMEN

Migratory cells - either individually or in cohesive groups - are critical for spatiotemporally regulated processes such as embryonic development and wound healing. Their dysregulation is the underlying cause of formidable health problems such as congenital abnormalities and metastatic cancers. Border cell behavior during Drosophila oogenesis provides an effective model to study temporally regulated, collective cell migration in vivo. Developmental timing in flies is primarily controlled by the steroid hormone ecdysone, which acts through a well-conserved, nuclear hormone receptor complex. Ecdysone signaling determines the timing of border cell migration, but the molecular mechanisms governing this remain obscure. We found that border cell clusters expressing a dominant-negative form of ecdysone receptor extended ineffective protrusions. Additionally, these clusters had aberrant spatial distributions of E-cadherin (E-cad), apical domain markers and activated myosin that did not overlap. Remediating their expression or activity individually in clusters mutant for ecdysone signaling did not restore proper migration. We propose that ecdysone signaling synchronizes the functional distribution of E-cadherin, atypical protein kinase C (aPKC), Discs large (Dlg1) and activated myosin post-transcriptionally to coordinate adhesion, polarity and contractility and temporally control collective cell migration.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Drosophila/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/fisiología , Miosinas/metabolismo , Drosophila melanogaster/metabolismo , Polaridad Celular/fisiología , Adhesión Celular
2.
Mol Cell ; 70(3): 545-552.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706537

RESUMEN

Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Escherichia coli/metabolismo , Luciérnagas/metabolismo , Humanos , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo
3.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837270

RESUMEN

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Asunto(s)
Hígado Graso , Hepatocitos , Ratones Noqueados , Obesidad , Animales , Ratones , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Hepatocitos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Selenoproteínas/metabolismo , Selenoproteínas/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo
4.
EMBO Rep ; 24(6): e55556, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37103980

RESUMEN

Alzheimer's, Parkinson's and Huntington's diseases can be caused by mutations that enhance protein aggregation, but we still do not know enough about the molecular players of these pathways to develop treatments for these devastating diseases. Here, we screen for mutations that might enhance aggregation in Caenorhabditis elegans, to investigate the mechanisms that protect against dysregulated homeostasis. We report that the stomatin homologue UNC-1 activates neurohormonal signalling from the sulfotransferase SSU-1 in ASJ sensory/endocrine neurons. A putative hormone, produced in ASJ, targets the nuclear receptor NHR-1, which acts cell autonomously in the muscles to modulate polyglutamine repeat (polyQ) aggregation. A second nuclear receptor, DAF-12, functions oppositely to NHR-1 to maintain protein homeostasis. Transcriptomics analyses of unc-1 mutants revealed changes in the expression of genes involved in fat metabolism, suggesting that fat metabolism changes, controlled by neurohormonal signalling, contribute to protein homeostasis. Furthermore, the enzymes involved in the identified signalling pathway are potential targets for treating neurodegenerative diseases caused by disrupted protein homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteostasis , Metabolismo de los Lípidos/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Esteroides/metabolismo
5.
Mol Cell ; 66(5): 648-657.e4, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575660

RESUMEN

The glycogen synthase kinase-3 (GSK3) family kinases are central cellular regulators highly conserved in all eukaryotes. In Arabidopsis, the GSK3-like kinase BIN2 phosphorylates a range of proteins to control broad developmental processes, and BIN2 is degraded through unknown mechanism upon receptor kinase-mediated brassinosteroid (BR) signaling. Here we identify KIB1 as an F-box E3 ubiquitin ligase that promotes the degradation of BIN2 while blocking its substrate access. Loss-of-function mutations of KIB1 and its homologs abolished BR-induced BIN2 degradation and caused severe BR-insensitive phenotypes. KIB1 directly interacted with BIN2 in a BR-dependent manner and promoted BIN2 ubiquitination in vitro. Expression of an F-box-truncated KIB1 caused BIN2 accumulation but dephosphorylation of its substrate BZR1 and activation of BR responses because KIB1 blocked BIN2 binding to BZR1. Our study demonstrates that KIB1 plays an essential role in BR signaling by inhibiting BIN2 through dual mechanisms of blocking substrate access and promoting degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Brasinoesteroides/farmacología , Proteínas F-Box/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteínas Quinasas/metabolismo , Esteroides Heterocíclicos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Dominio Catalítico , Proteínas de Unión al ADN , Activación Enzimática , Estabilidad de Enzimas , Proteínas F-Box/genética , Genotipo , Glucógeno Sintasa Quinasa 3/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteolisis , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
6.
Mol Cell ; 67(6): 947-961.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890336

RESUMEN

The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plasticidad de la Célula , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Genotipo , Proteínas HSP90 de Choque Térmico/genética , Mutación , Proteína Oncogénica pp60(v-src)/genética , Proteína Oncogénica pp60(v-src)/metabolismo , Fenotipo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
7.
Trends Biochem Sci ; 45(6): 497-510, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32413325

RESUMEN

The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Factores de Transcripción/fisiología , Ensamble y Desensamble de Cromatina , Humanos , Procesamiento Proteico-Postraduccional , Transducción de Señal
8.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37648450

RESUMEN

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Asunto(s)
Canal de Potasio KCNQ2 , Agonistas Muscarínicos , Masculino , Femenino , Ratones , Ratas , Animales , Sulfato de Deshidroepiandrosterona , Canal de Potasio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacología , Dolor/tratamiento farmacológico , Formaldehído , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo
9.
Semin Cell Dev Biol ; 121: 71-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119408

RESUMEN

Signaling by androgens through androgen receptor (AR) is essential to complete spermatogenesis in the testis. Similarly, loss of the main estrogen receptor, estrogen receptor 1 (ESR1; also known as ERα), results in male infertility, due in part to indirect deleterious effects on the seminiferous epithelium and spermatogenesis. Effects of steroid hormones are induced primarily through genomic changes induced by hormone-mediated activation of their intracellular receptors and subsequent effects on nuclear gene transcription. However, androgens and estrogens also signal through rapid nonclassical pathways involving actions initiated at the cell membrane. Here we review the data that nonclassical androgen and estrogen signaling pathways support processes essential for male fertility in the testis and reproductive tract. The recent development of transgenic mice lacking nonclassical AR or ESR1 signaling but retaining genomic nuclear signaling has provided a powerful tool to elucidate the function of nonclassical signaling in the overall response to androgens and estrogens. Results from these mice have emphasized that nonclassical signaling is essential for full responses to these hormones, and absence of either nonclassical or classical AR or ESR1 pathways produces abnormalities in spermatogenesis and the male reproductive tract. Although additional work is required to fully understand how classical and nonclassical receptor signaling synergize to produce full steroid hormone responses, here we summarize the known physiological functions of the classical and nonclassical androgen and estrogen signaling pathways in the testis and reproductive tract.


Asunto(s)
Andrógenos/metabolismo , Estrógenos/metabolismo , Espermatogénesis/genética , Animales , Masculino , Ratones , Ratones Transgénicos
10.
Curr Issues Mol Biol ; 46(3): 2355-2385, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534766

RESUMEN

Low-salt diet (LSD) is a constant recommendation to hypertensive patients, but the genomic mechanisms through which it improves cardiac pathophysiology are still not fully understood. Our publicly accessible transcriptomic dataset of the left ventricle myocardium of adult male mice subjected to prolonged LSD or normal diet was analyzed from the perspective of the Genomic Fabric Paradigm. We found that LSD shifted the metabolic priorities by increasing the transcription control for fatty acids biosynthesis while decreasing it for steroid hormone biosynthesis. Moreover, LSD remodeled pathways responsible for cardiac muscle contraction (CMC), chronic Chagas (CHA), diabetic (DIA), dilated (DIL), and hypertrophic (HCM) cardiomyopathies, and their interplays with the glycolysis/glucogenesis (GLY), oxidative phosphorylation (OXP), and adrenergic signaling in cardiomyocytes (ASC). For instance, the statistically (p < 0.05) significant coupling between GLY and ASC was reduced by LSD from 13.82% to 2.91% (i.e., -4.75×), and that of ASC with HCM from 10.50% to 2.83% (-3.71×). The substantial up-regulation of the CMC, ASC, and OXP genes, and the significant weakening of the synchronization of the expression of the HCM, CHA, DIA, and DIL genes within their respective fabrics justify the benefits of the LSD recommendation.

11.
Development ; 148(5)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692089

RESUMEN

Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with ß-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.


Asunto(s)
Ecdisterona/farmacología , Proteínas de Insectos/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Clatrina/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Endocitosis , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
12.
Biol Reprod ; 111(2): 463-471, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685627

RESUMEN

Immunoassays have been the preferred method for steroid hormone analysis for more than 50 years. Automated immunoassays (AIAs) offer high throughput, rapid data turnaround, and low cost for measuring steroid hormone concentrations. The application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for steroid quantification provides greater specificity and selectivity for individual steroids, the ability to simultaneously analyze multiple steroids, and high throughput and automation. We compared AIA and LC-MS/MS for analysis of 17beta-estradiol (E2) and progesterone (P4) over the course of several menstrual cycles in 12 rhesus macaques (Macaca mulatta). Serum samples were collected every 4 days across four menstrual cycles from each monkey. AIAs were performed on a Roche cobas e411 analyzer. LC-MS/MS analysis was performed on a Shimadzu-Nexera-LCMS-8060 instrument. Scatter plots with Passing-Bablok regression showed excellent agreement between AIA and LC-MS/MS for both E2 and P4. Bland-Altman plots revealed no bias for either method; however, AIA overestimated E2 at concentrations >140 pg/ml and underestimated P4 at concentrations >4 ng/ml compared to LC-MS/MS. A comparison of testosterone concentrations measured by AIA and LC-MS/MS in the same samples was also performed. In contrast to E2 and P4, AIA and LC-MS/MS yielded significantly different results for testosterone concentrations, with AIA consistently underestimating concentrations relative to those obtained by LC-MS/MS. Well-characterized automated immunoassays are an excellent tool for daily monitoring of monkey menstrual cycles or providing single data points requiring fast turnaround. In certain situations where AIAs may provide inaccurate estimations of E2 and P4 concentrations, LC-MS/MS assays are preferable.


Asunto(s)
Estradiol , Macaca mulatta , Ciclo Menstrual , Progesterona , Espectrometría de Masas en Tándem , Macaca mulatta/sangre , Animales , Femenino , Ciclo Menstrual/sangre , Espectrometría de Masas en Tándem/métodos , Progesterona/sangre , Estradiol/sangre , Inmunoensayo/métodos , Cromatografía Liquida/métodos , Hormonas Esteroides Gonadales/sangre
13.
Plant Biotechnol J ; 22(8): 2333-2347, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600703

RESUMEN

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.


Asunto(s)
Glycine max , Estrés Fisiológico , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Esteroides/metabolismo , Sequías , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
14.
Toxicol Appl Pharmacol ; 483: 116816, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218207

RESUMEN

Phthalates (PEs), such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) could cause reproductive and developmental toxicities, while human beings are increasingly exposed to them at low-doses. Phytochemical quercetin (Que) is a flavonoid that has estrogenic effect, anti-inflammatory and anti-oxidant effects. This study was conducted to assess the alleviative effect of Que. on male reproductive toxicity induced by the mixture of three commonly used PEs (MPEs) at low-dose in rats, and explore the underlying mechanism. Male rats were treated with MPEs (16 mg/kg/day) and/or Que. (50 mg/kg/d) for 91 days. The results showed that MPEs exposure caused male reproductive injuries, such as decreased serum sex hormones levels, abnormal testicular pathological structure, increased abnormal sperm rate and changed expressions of PIWIL1 and PIWIL2. Furthermore, MPEs also changed the expression of steroidogenic proteins in steroid hormone metabolism, including StAR, CYP11A1, CYP17A1, 17ß-HSD, CYP19A1. However, the alterations of these parameters were reversed by Que. MPEs caused male reproductive injuries in rats; Que. inhibited MPEs' male reproductive toxicity, which might relate to the improvement of testosterone biosynthesis.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Testosterona , Ratas Sprague-Dawley , Semen/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Testículo , Dietilhexil Ftalato/toxicidad , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacología
15.
Diabet Med ; 41(2): e15262, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38017692

RESUMEN

AIMS: Bespoke glycaemic control strategies following antenatal corticosteroids for women with diabetes in pregnancy (DIP) may mitigate hyperglycaemia. This study aims to identify predictive factors for the glycaemic response to betamethasone in a large cohort of women with DIP. METHODS: Evaluation of a prospective cohort study of 347 consecutive DIP pregnancies receiving two doses of 11.4 mg betamethasone 24 h apart between 2017 and 2021 and treated with the Pregnancy-IVI intravenous insulin protocol. Regression modelling identified factors associated with maternal glycaemic time-in-range (TIR) and maternal insulin requirements following betamethasone. Factors associated with neonatal hypoglycaemia (glucose <2.6 mmol/L) in infants born within 48 h of betamethasone administration (n = 144) were investigated. RESULTS: The mean maternal age was 31.9 ± 5.8 years, with gestational age at betamethasone of 33.5 ± 3.4 weeks. Gestational diabetes was present in 81% (12% type 1; 7% type 2). Pre-admission subcutaneous insulin was prescribed for 63%. On-infusion maternal glucose TIR (4.0-7.8 mmol/L) was 83% [IQR 77%-90%] and mean on-IVI glucose was 6.6 ± 0.5 mmol/L. Maternal hypoglycaemia (<3.8 mmol/L) was uncommon (0.47 h/100 on-IVI woman hours). Maternal glucose TIR was negatively associated with indicators of insulin resistance (type 2 diabetes, polycystic ovary syndrome), late-pregnancy complications (pre-eclampsia, chorioamnionitis) and the 1-h OGTT result. Intravenous insulin requirements were associated with type of diabetes, pre-eclampsia and intrauterine infection, the 1-h OGTT result and the timing of betamethasone administration. Neonatal hypoglycaemia was associated with pre-existing diabetes but not with measures of glycaemic control. CONCLUSION: An intravenous infusion protocol effectively controls maternal glucose after betamethasone. A risk-factor-based approach may allow individualisation of therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Enfermedades Fetales , Hiperglucemia , Hipoglucemia , Preeclampsia , Embarazo en Diabéticas , Recién Nacido , Embarazo , Femenino , Humanos , Adulto , Lactante , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/epidemiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Betametasona/uso terapéutico , Hiperglucemia/prevención & control , Estudios Prospectivos , Hipoglucemia/inducido químicamente , Hipoglucemia/epidemiología , Hipoglucemia/prevención & control , Embarazo en Diabéticas/tratamiento farmacológico , Parto , Insulina/efectos adversos , Glucosa
16.
Horm Behav ; 163: 105561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759417

RESUMEN

Offspring from females breeding in competitive social environments are often exposed to more testosterone (T) during embryonic development, which can affect traits from growth to behavior in potentially adaptive ways. Despite the important role of maternally derived steroids in shaping offspring development, the molecular mechanisms driving these processes are currently unclear. Here, we use tree swallows (Tachycineta bicolor) to explore the effects of the maternal social environment on yolk T concentrations and genome-wide patterns of neural gene expression in embryos. We measured aggressive interactions among females breeding at variable densities and collected their eggs at two timepoints, including the day laid to measure yolk T concentrations and on embryonic day 11 to measure gene expression in whole brain samples. We found that females breeding in high-density sites experienced elevated rates of physical aggression and their eggs had higher yolk T concentrations. A differential gene expression and weighted gene co-expression network analysis indicated that embryos from high-density sites experienced an upregulation of genes involved in hormone, circulatory, and immune processes, and these gene expression patterns were correlated with yolk T levels and aggression. Genes implicated in neural development were additionally downregulated in embryos from high-density sites. These data highlight how early neurogenomic processes may be affected by the maternal social environment, giving rise to phenotypic plasticity in offspring.


Asunto(s)
Yema de Huevo , Medio Social , Golondrinas , Testosterona , Animales , Testosterona/metabolismo , Femenino , Yema de Huevo/metabolismo , Yema de Huevo/química , Golondrinas/genética , Golondrinas/metabolismo , Agresión/fisiología , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo , Encéfalo/metabolismo
17.
BMC Vet Res ; 20(1): 181, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715073

RESUMEN

BACKGROUND: The risk of developing tumorous diseases in the genital tract also increases with age in animals. One of the classified tumor types is genital leiomyoma. Presently, our understanding of the pathogenesis of this tumor in goats is, however, limited. This accounts also for the information regarding the presence of steroid hormone receptors and, thus, possible responsiveness to circulating steroids. CASE PRESENTATION: This study describes the case of a vaginal tumor in a seven-year-old Anglo-Nubian goat. The goat was presented due to blood mixed vaginal discharge. Per vaginal examination a singular pedunculated mass in the dorsum of the vagina measuring approximately 3 cm x 4 cm x 4 cm was revealed. After administering epidural anesthesia, the mass was removed electrothermally. There were no postoperative complications. The histopathological examination identified the mass as a leiomyoma. The immunohistochemical examination revealed the presence of the nuclear progesterone receptor (PGR) in the tumor tissue. One year after the surgery, during the follow-up examination, the goat was in good overall health, and the owners had not observed any recurrence of vaginal discharge. CONCLUSIONS: When observing vaginal discharge in goats, it is important to consider the possibility of genital tract tumors. These tumors may express sex steroid receptors. In the future, it is worth considering the investigation of potential approaches for preventing tumorigenesis or treating the tumor, such as castration or the administration of antiprogestogens.


Asunto(s)
Enfermedades de las Cabras , Cabras , Leiomioma , Receptores de Progesterona , Neoplasias Vaginales , Animales , Femenino , Leiomioma/veterinaria , Leiomioma/patología , Leiomioma/cirugía , Neoplasias Vaginales/veterinaria , Neoplasias Vaginales/patología , Receptores de Progesterona/metabolismo , Enfermedades de las Cabras/patología
18.
Eur J Oral Sci ; 132(2): e12968, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135670

RESUMEN

The objective of this study was to clarify whether there are sex-specific differences in salivary α-amylase and immunoglobulin A responses following acute endurance exercise in adolescent males and females with equivalent cardiorespiratory fitness levels. Twenty-six aerobically trained adolescent males and females with similar training status were enrolled in this study. Each individual executed a 1-h prolonged cycling exercise corresponding to a constant power output at 65% of peak oxygen uptake. Unstimulated whole salivary samples were taken with the passive drooling method at the 10-min period before and after exercise for the determination of salivary responses [α-amylase, immunoglobulin A, total protein and flow rate]. Salivary α-amylase activity, immunoglobulin A concentration and total protein concentration were significantly augmented immediately after acute endurance exercise. Regarding sex differences, only the salivary flow rate was significantly lower in females than in males. The findings of the present study imply that adolescent males and females appear to have similar salivary responses after acute endurance exercise, as represented by salivary α-amylase activity and immunoglobulin A concentration in connection with total protein concentration and salivary flow rate, when they are matched for peak oxygen uptake relative to fat-free body mass.


Asunto(s)
alfa-Amilasas Salivales , Humanos , Masculino , Femenino , Adolescente , alfa-Amilasas Salivales/metabolismo , Saliva/metabolismo , Ejercicio Físico/fisiología , Inmunoglobulina A , Oxígeno
19.
Bioessays ; 44(4): e2100191, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35195290

RESUMEN

In human languages, a palindrome reads the same forward as backward (e.g., 'madam'). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor differentiation and mammalian steroid receptor signaling. Moreover, we discuss mechanistic explanations for the predominance of imperfect palindromes over perfect palindromes in these two gene regulatory contexts. Lastly, we propose to elucidate whether specific imperfectly palindromic variants have specific regulatory functions in steroid receptor signaling and whether such variants can help predict transcriptional outcomes as well as the response of individual patients to drug treatments.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Secuencia de Bases , Humanos , Mamíferos , Factores de Transcripción/genética
20.
Subcell Biochem ; 101: 41-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520303

RESUMEN

The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas de Unión a Tacrolimus , Humanos , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Inmunofilinas/genética , Inmunofilinas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda