Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Mol Cell ; 83(21): 3885-3903.e5, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37832545

RESUMEN

The translocation of stimulator of interferon genes (STING) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC) enables its activation. However, the mechanism underlying the regulation of STING exit from the ER remains elusive. Here, we found that STING induces the activation of transforming growth factor beta-activated kinase 1 (TAK1) prior to STING trafficking in a TAK1 binding protein 1 (TAB1)-dependent manner. Intriguingly, activated TAK1 directly mediates STING phosphorylation on serine 355, which facilitates its interaction with STING ER exit protein (STEEP) and thereby promotes its oligomerization and translocation to the ERGIC for subsequent activation. Importantly, activation of TAK1 by monophosphoryl lipid A, a TLR4 agonist, boosts cGAMP-induced antitumor immunity dependent on STING phosphorylation in a mouse allograft tumor model. Taken together, TAK1 was identified as a checkpoint for STING activation by promoting its trafficking, providing a basis for combinatory tumor immunotherapy and intervention in STING-related diseases.


Asunto(s)
Neoplasias , Animales , Ratones , Fosforilación
2.
Proc Natl Acad Sci U S A ; 120(33): e2305420120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549268

RESUMEN

Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo , ADN
3.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421179

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Asunto(s)
FN-kappa B , Síndrome de Trombocitopenia Febril Grave , Humanos , FN-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal/genética , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Interferones/metabolismo , Antivirales , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Glia ; 72(2): 300-321, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37937831

RESUMEN

Neuropsychiatric complications including depression and cognitive decline develop in the years after traumatic brain injury (TBI), negatively affecting quality of life. Microglial and type 1 interferon (IFN-I) responses are associated with the transition from acute to chronic neuroinflammation after diffuse TBI in mice. Thus, the purpose of this study was to determine if impaired neuronal homeostasis and increased IFN-I responses intersected after TBI to cause cognitive impairment. Here, the RNA profile of neurons and microglia after TBI (single nucleus RNA-sequencing) with or without microglia depletion (CSF1R antagonist) was assessed 7 dpi. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and synaptic migration and increases in RhoGDI and PTEN signaling (Ingenuity Pathway Analysis). Microglial depletion reversed 50% of TBI-induced gene changes in cortical neurons depending on subtype. Moreover, the microglial RNA signature 7 dpi was associated with increased stimulator of interferon genes (STING) activation and IFN-I responses. Therefore, we sought to reduce IFN-I signaling after TBI using STING knockout mice and a STING antagonist, chloroquine (CQ). TBI-associated cognitive deficits in novel object location and recognition (NOL/NOR) tasks at 7 and 30 dpi were STING dependent. In addition, TBI-induced STING expression, microglial morphological restructuring, inflammatory (Tnf, Cd68, Ccl2) and IFN-related (Irf3, Irf7, Ifi27) gene expression in the cortex were attenuated in STINGKO mice. CQ also reversed TBI-induced cognitive deficits and reduced TBI-induced inflammatory (Tnf, Cd68, Ccl2) and IFN (Irf7, Sting) cortical gene expression. Collectively, reducing IFN-I signaling after TBI with STING-dependent interventions attenuated the prolonged microglial activation and cognitive impairment.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Interferón Tipo I , Ratones , Animales , Interferón Tipo I/metabolismo , Microglía/metabolismo , Calidad de Vida , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Cognición , Neuronas/metabolismo , ARN/metabolismo , Ratones Endogámicos C57BL
5.
Small ; 20(9): e2307448, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37845027

RESUMEN

Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.


Asunto(s)
Piroptosis , Radio (Elemento) , Radio (Elemento)/farmacología , Radio (Elemento)/uso terapéutico , Muerte Celular , ADN
6.
Small ; 20(26): e2309850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225710

RESUMEN

Although chemotherapy has the potential to induce tumor immunotherapy via immunogenic cell death (ICD) effects, how to control the intensity of the immune responses still deserves further exploration. Herein, a controllable ultrasound (US)-triggered chemo-immunotherapy nanoagonist is successfully synthesized by utilizing the pH and reactive oxygen species (ROS) dual-responsive PEG-polyphenol to assemble sonosensitizer zinc oxide (ZnO) and doxorubicin (DOX). The PZnO@DOX nanoparticles have an intelligent disassembly to release DOX and zinc ions in acidic pH conditions. Notably, US irradiation generates ROS by sonodynamic therapy and accelerates the drug release process. Interestingly, after the PZnO@DOX+US treatment, the injured cells release double-stranded DNA (dsDNA) from the nucleus and mitochondria into the cytosol. Subsequently, both the dsDNA and zinc ions bind with cyclic GMP-AMP synthase and activate the stimulator of interferon genes (STING) pathway, resulting in the dendritic cell maturation, ultimately promoting DOX-induced ICD effects and antigen-specific T cell immunity. Therefore, chemotherapy-induced immune responses can be modulated by non-invasive control of US.


Asunto(s)
Doxorrubicina , Muerte Celular Inmunogénica , Nanopartículas , Óxido de Zinc , Doxorrubicina/farmacología , Doxorrubicina/química , Muerte Celular Inmunogénica/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Animales , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Membrana/metabolismo , Humanos , Ondas Ultrasónicas , Ratones , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , ADN/química , ADN/metabolismo
7.
Small ; 20(22): e2307961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126911

RESUMEN

Activating the stimulator of the interferon gene (STING) is a promising immunotherapeutic strategy for converting "cold" tumor microenvironment into "hot" one to achieve better immunotherapy for malignant tumors. Herein, a manganese-based nanotransformer is presented, consisting of manganese carbonyl and cyanine dye, for MRI/NIR-II dual-modality imaging-guided multifunctional carbon monoxide (CO) gas treatment and photothermal therapy, along with triggering cGAS-STING immune pathway against triple-negative breast cancer. This nanosystem is able to transfer its amorphous morphology into a crystallographic-like formation in response to the tumor microenvironment, achieved by breaking metal-carbon bonds and forming coordination bonds, which enhances the sensitivity of magnetic resonance imaging. Moreover, the generated CO and photothermal effect under irradiation of this nanotransformer induce immunogenic death of tumor cells and release damage-associated molecular patterns. Simultaneously, the Mn acts as an immunoactivator, potentially stimulating the cGAS-STING pathway to augment adaptive immunity, resulting in promoting the secretion of type I interferon, the proliferation of cytotoxic T lymphocytes and M2-macrophages repolarization. This nanosystem-based gas-photothermal treatment and immunoactivating therapy synergistic effect exhibit excellent antitumor efficacy both in vitro and in vivo, reducing the risk of triple-negative breast cancer recurrence and metastasis; thus, this strategy presents great potential as multifunctional immunotherapeutic agents for cancer treatment.


Asunto(s)
Inmunoterapia , Manganeso , Terapia Fototérmica , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/terapia , Inmunoterapia/métodos , Manganeso/química , Humanos , Animales , Terapia Fototérmica/métodos , Línea Celular Tumoral , Femenino , Imagen por Resonancia Magnética/métodos , Ratones , Microambiente Tumoral , Nanopartículas/química , Fototerapia/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-39289182

RESUMEN

PURPOSE: The stimulator of interferon genes (STING) is a critical component of the innate immune system and plays a pivotal role in tumor immunotherapy. Developing non-invasive in vivo diagnostic methods for visualizing STING is highly valuable for STING-related immunotherapy. This work aimed to build a noninvasive imaging platform that can dynamically and quantitatively monitor tumor STING expression. METHODS: We investigated the in vivo positron emission tomography (PET) imaging of STING-expressing tumors (B16F10, MC38, and Panc02) with STING-targeted radioprobe ([18F]F-CRI1). The expression of STING in tumors was quantified, and correlation analysis was performed between these results and the outcomes of PET imaging. Furthermore, we optimized the structure of [18F]F-CRIn with polyethylene glycol (PEG) to improve the pharmacokinetic characteristics in vivo. A comprehensive comparison of the imaging and biodistribution results obtained with the optimized probes was conducted in the B16F10 tumors. RESULTS: The PET imaging results showed that the uptake of [18F]F-CRI1 in tumors was positively correlated with the expression of STING in tumors (r = 0.9184, P < 0.001 at 0.5 h). The lipophilicity of the optimized probes was significantly reduced. As a result of employing optimized probes, B16F10 tumor-bearing mice exhibited significantly improved tumor visualization in PET imaging, along with a marked reduction in retention within non-target areas such as the gallbladder and intestines. Biodistribution experiments further validated the efficacy of probe optimization in reducing uptake in non-target areas. CONCLUSION: In summary, this work demonstrated a promising pathway for the development of STING-targeted radioprobes, advancing in vivo PET imaging capabilities.

9.
Eur J Nucl Med Mol Imaging ; 51(3): 641-655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37924341

RESUMEN

PURPOSE: To optimize chemotherapy regimens and improve the effectiveness of chemotherapy combined with immunotherapy, a PET tracer specifically targeting the stimulator of interferon genes (STING), denoted as [18F]FBTA was used to monitor the early changes in tumor immunogenicity after chemotherapy in colorectal cancer (CRC) mice. METHODS: The toluene sulfonate precursor was labeled with 18F to produce the STING targeted probe-[18F]FBTA. [18F]FBTA-PET imaging and biodistribution were performed using CRC mice treated with oxaliplatin (OXA) or cisplatin (CDDP). CRC mice were also treated with low (CDDP-LD: 1 mg/kg) or medium (CDDP-MD: 2.5 mg/kg) doses of CDDP, and subjected to PET imaging and biodistribution. The effects of different chemotherapeutic agents and different doses of CDDP on tumor innate immunity were verified by flow cytometry and immunohistochemistry. RESULTS: PET imaging of CRC mice exhibited notably enhanced tumor uptake in the early phase of chemotherapy with treatment with OXA (3.09 ± 0.25%ID/g) and CDDP (4.01 ± 0.18%ID/g), especially in the CDDP group. The PET-derived tumor uptake values have strong correlations with STING immunohistochemical score. Flow cytometry showed both agents led to DCs and macrophages infiltration in tumors. Compared with OXA, CDDP treatment recruits more DCs and macrophages in CRC tumors. Both CDDP-LD and CDDP-MD treatment elevated uptake in CRC tumors, especially in CDDP-MD group. Immunohistochemistry and flow cytometry confirmed CDDP-MD treatment recruits more DCs and macrophages than CDDP-LD treatment. CONCLUSION: Overall, the STING-targeted tracer-[18F]FBTA was demonstrated to monitor early changes in tumor immunogenicity in CRC mice after chemotherapy. Besides, the STING-targeted strategy may help to select the appropriate chemotherapy regimen, including chemotherapeutic agents and doses, which further improve clinical decision making for combination immunotherapy after chemotherapy for CRC.


Asunto(s)
Neoplasias Colorrectales , Tomografía de Emisión de Positrones , Ratones , Animales , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Línea Celular Tumoral
10.
FASEB J ; 37(9): e23127, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37561547

RESUMEN

Our previous research revealed that an increase in PCSK9 is linked to aggravated inflammation in the kidneys of mice affected by a high-fat diet and streptozotocin (HFD/STZ) or in HGPA-induced HK-2 cells. Furthermore, the cGAS/STING pathway has been reported to be involved in diabetic nephropathy (DN). Therefore, in this study, we aimed to examine the correlation between the proinflammatory effect of PCSK9 and the cGAS/STING pathway in DN. We used PCSK9 mAbs to inhibit PCSK9 in vivo and PCSK9 siRNA in vitro and measured the inflammatory phenotype in HFD/STZ-treated mice or HGPA-induced HK-2 cells, and observed decreased blood urea nitrogen, creatinine, UACR, and kidney injury in response to the PCSK9 mAb in HFD/STZ-treated mice. Moreover, IL-1 ß, MCP-1, and TNF-α levels were reduced by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. We observed increased mtDNA damage and activation of the cGAS-STING signaling pathway during DN, as well as the downstream targets p-TBK1, p-NF-κB p65, and IL-1ß. In a further experiment with an HGPA-induced DN model in HK-2 cells, we revealed that mtDNA damage was increased, which led to the activation of the cGAS/STING system and its downstream targets. Notably, the cGAS-STING signaling pathway was inhibited by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. In addition, inhibition of STING with C-176 in HGPA-induced HK-2 cells markedly blocked inflammation. In conclusion, we report for the first time that PCSK9 triggers mitochondrial DNA damage and activates the cGAS-STING pathway in DN, which leads to a series of inflammation cascades. PCSK9-targeted intervention can effectively reduce DN inflammation and delay its progression. Moreover, the inhibition of STING significantly abrogated the inflammation triggered by HGPA in HK-2 cells.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Proproteína Convertasa 9 , Animales , Ratones , Nefropatías Diabéticas/metabolismo , ADN Mitocondrial/metabolismo , Inflamación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proproteína Convertasa 9/genética , Humanos , Línea Celular
11.
FASEB J ; 37(3): e22806, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786722

RESUMEN

Recent studies already confirmed that placenta mitochondrial dysfunction is associated with the progression of gestational diabetes mellitus (GDM). Besides, a possible relationship between adipokine chemerin and disulfide-bond A oxidoreductase-like protein (DsbA-L) had been revealed, whereas the potential interaction remains unclear. In addition, very little is still known about the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and its mechanisms of action in the context of GDM. The present study aims to investigate the underlying mechanism of cGAS-STING pathway and its regulatory relationship with chemerin in GDM. A total of 50 participants, including 25 cases of GDM patients and 25 pregnant women with normal glucose tolerance, were enrolled, and their placenta tissues at term labor were collected. Besides, an insulin resistance cell model was established on the human trophoblastic cell line to explore the molecular mechanism of chemerin on cGAS-STING pathway. Results showed that there were mitochondrial pathological changes in GDM placenta, accompanied by the decreased expression of DsbA-L, increased level of chemerin, and the activation of cGAS-STING pathway. In the insulin resistant cell model, overexpression of chemerin upregulated protein expression of DsbA-L, and recombinant chemerin presented time-dependent inhibition on the cGAS-STING pathway, but this effect was not dependent on DsbA-L. In conclusion, elevated chemerin is probably a protective mechanism, which may be a potential therapeutic strategy for GDM.


Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Embarazo , Adipoquinas , Diabetes Gestacional/metabolismo , Nucleotidiltransferasas/metabolismo , Placenta/metabolismo , Transducción de Señal
12.
Mol Pharm ; 21(4): 1942-1951, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447198

RESUMEN

The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.


Asunto(s)
Bencimidazoles , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Microambiente Tumoral , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Bencimidazoles/química , Bencimidazoles/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Humanos
13.
Mol Pharm ; 21(6): 2865-2877, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38666508

RESUMEN

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.


Asunto(s)
Proteínas de la Membrana , Miocarditis , Tomografía de Emisión de Positrones , Animales , Masculino , Ratones , Ciclosporina , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Miocarditis/diagnóstico por imagen , Miocarditis/tratamiento farmacológico , Miocardio/metabolismo , Miocardio/patología , Radiofármacos
14.
EMBO Rep ; 23(6): e53932, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35403787

RESUMEN

Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Animales , Enfermedades Autoinmunes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neoplasias/metabolismo , Piperazinas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico
15.
Mol Ther ; 31(10): 3084-3103, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37533255

RESUMEN

Hypertension is a primary modifiable risk factor for cardiovascular diseases, which often induces renal end-organ damage and complicates chronic kidney disease (CKD). In the present study, histological analysis of human kidney samples revealed that hypertension induced mtDNA leakage and promoted the expression of stimulator of interferon genes (STING) in renal epithelial cells. We used angiotensin II (AngII)- and 2K1C-treated mouse kidneys to elucidate the underlying mechanisms. Abnormal renal mtDNA packing caused by AngII promoted STING-dependent production of inflammatory cytokines, macrophage infiltration, and a fibrogenic response. STING knockout significantly decreased nuclear factor-κB activation and immune cell infiltration, attenuating tubule atrophy and extracellular matrix accumulation in vivo and in vitro. These effects delayed CKD progression. Immunoprecipitation assays and liquid chromatography-tandem mass spectrometry showed that STING and ACSL4 were directly combined at the D53 and K412 amino acids of ACSL4. Furthermore, STING induced renal inflammatory response and fibrosis through ACSL4-dependent ferroptosis. Last, inhibition of ACSL4 using small interfering RNA, rosiglitazone, or Fer-1 downregulated AngII-induced mtDNA-STING-dependent renal inflammation. These results suggest that targeting the STING/ACSL4 axis might represent a potential strategy for treating hypertension-associated CKD.

16.
Oral Dis ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696515

RESUMEN

OBJECTIVE: This study aimed to assess the effects of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) in chronic periodontitis and explore the underlying mechanism involved. METHODS: In vitro, Pg-OMVs were incubated with Ea.hy926 (vessel endothelial cells, ECs) to evaluate their effects on endothelial functions and to investigate the underlying mechanism. The effects of endothelial dysfunction on MG63 osteoblast-like cells were verified using an indirect co-culture method. For in vivo studies, micro-CT was conducted to identify alveolar bone mass. Immunofluorescence staining was conducted to confirm the levels of stimulator of interferon genes (STING) in the blood vessel and the number of Runx2+ cells around the alveolar bone. RESULTS: Pg-OMVs were endocytosed by ECs, leading to endothelial dysfunction. The cGAS-STING-TBK1 pathway was activated in ECs, which subsequently inhibited MG63 migration and early osteogenesis differentiation. In vivo, Pg-OMVs promoted alveolar bone resorption, increased STING levels in the blood vessel, and decreased Runx2+ cells around the alveolar bone. CONCLUSIONS: Pg-OMVs caused endothelial dysfunction and activated the cGAS-STING-TBK1 signal cascade in ECs, thereby impairing ECs-mediated osteogenesis. Furthermore, Pg-OMVs aggregated alveolar bone loss and altered the blood vessel-mediated osteogenesis with elevated STING.

17.
Am J Physiol Renal Physiol ; 324(6): F558-F567, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102684

RESUMEN

Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-ß, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-ß mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Choque Hemorrágico , Ratones , Animales , Lipocalina 2/metabolismo , Choque Hemorrágico/complicaciones , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patología , Daño por Reperfusión/complicaciones , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Reperfusión , Interferones/metabolismo , Interferones/farmacología , Interferones/uso terapéutico , Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/farmacología , Proteínas de Unión al ARN/uso terapéutico
18.
Clin Immunol ; 250: 109300, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963448

RESUMEN

Trauma-induced heterotopic ossification (HO) is featured by aberrant bone formation at extra-skeletal site. STING is a master adaptor protein linking cellular damage to immune responses, while its role in HO remains elusive. A murine burn/tenotomy model was used to mimic trauma-induced HO in vivo. We demonstrated elevated STING expression in macrophages in inflammatory stage after burn/tenotomy, and STING inhibition significantly alleviated HO formation. Activated NLRP3-dependent macrophage pyroptosis was also found in inflammatory stage after burn/tenotomy. Either STING or NLRP3 suppression reduced mature HO by weakening macrophage pyroptotic inflammation, while protective effects of STING were abolished by NLRP3 overexpression. Further, in vitro, we also found a prominent STING level in pyroptotic BMDMs. STING suppression relieved macrophage pyroptotic inflammation, while abolished by NLRP3 overexpression. Our results reveal that STING poses regulatory effects on trauma-induced HO formation, via modulating NLRP3-dependent macrophage pyroptosis. Targeting STING-NLRP3 axis represents an attractive approach for trauma-induced HO prevention.


Asunto(s)
Quemaduras , Osificación Heterotópica , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Osificación Heterotópica/etiología , Osificación Heterotópica/metabolismo , Osificación Heterotópica/prevención & control , Macrófagos/metabolismo , Quemaduras/complicaciones , Quemaduras/metabolismo , Inflamasomas/metabolismo
19.
J Neuroinflammation ; 20(1): 37, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793064

RESUMEN

BACKGROUND: The "missing" link of complex and multifaceted interplay among endogenous retroviruses (ERVs) transcription, chronic immuno-inflammation, and the development of psychiatric disorders is still far from being completely clarified. The present study was aimed to investigate the mechanism of protective role of inhibiting ERVs on reversing microglial immuno-inflammation in basolateral amygdala (BLA) in chronic stress-induced negative emotional behaviors in mice. METHODS: Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 6 w. Negative emotional behaviors were comprehensively investigated to identify the susceptible mice. Microglial morphology, ERVs transcription, intrinsic nucleic acids sensing response, and immuno-inflammation in BLA were assessed. RESULTS: Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors, and accompanied with significant microglial morphological activation, murine ERVs genes MuERV-L, MusD, and IAP transcription, cGAS-IFI16-STING pathway activation, NF-κB signaling pathway priming, as well as NLRP3 inflammasome activation in BLA. Antiretroviral therapy, pharmacological inhibition of reverse transcriptases, as well as knocking-down the ERVs transcriptional regulation gene p53 significantly inhibited microglial ERVs transcription and immuno-inflammation in BLA, as well as improved the chronic stress-induced negative emotional behaviors. CONCLUSIONS: Our results provided an innovative therapeutic approach that targeting ERVs-associated microglial immuno-inflammation may be beneficial to the patients with psychotic disorders.


Asunto(s)
Retrovirus Endógenos , Ratones , Masculino , Animales , Microglía/metabolismo , Ratones Endogámicos C57BL , Depresión/tratamiento farmacológico , Transducción de Señal , Inflamación/metabolismo , Estrés Psicológico/psicología
20.
Small ; 19(43): e2300544, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381624

RESUMEN

Although stimulator of interferon genes (STING) agonists has shown great promise in preclinical studies, the clinical development of STING agonist therapy is challenged by its limited systemic delivery. Here, positively charged fusogenic liposomes loaded with a STING agonist (PoSTING) are designed for systemic delivery and to preferentially target the tumor microenvironment. When PoSTING is administered intravenously, it selectively targets not only tumor cells but also immune and tumor endothelial cells (ECs). In particular, delivery of STING agonists to tumor ECs normalizes abnormal tumor vasculatures, induces intratumoral STING activation, and elicits robust anti-tumor T cell immunity within the tumor microenvironment. Therefore, PoSTING can be used as a systemic delivery platform to overcome the limitations of using STING agonists in clinical trials.


Asunto(s)
Liposomas , Neoplasias , Humanos , Microambiente Tumoral , Células Endoteliales , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Inmunoterapia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda