Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.530
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Trends Genet ; 39(10): 787-801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633768

RESUMEN

Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.


Asunto(s)
Productos Agrícolas , Factores de Transcripción , Factores de Transcripción/genética , Productos Agrícolas/genética , Epigénesis Genética , Edición Génica , Transducción de Señal/genética
2.
Bioessays ; 45(8): e2200237, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246937

RESUMEN

Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.


Asunto(s)
Eucariontes , Recombinación Genética , Estudios Prospectivos , Meiosis/genética , Evolución Biológica , Selección Genética
3.
Proc Natl Acad Sci U S A ; 119(18): e2108878119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35446691

RESUMEN

A better understanding of how environmental change will affect species interactions would significantly aid efforts to scale up predictions of near-future responses to global change from individuals to ecosystems. To address this need, we used meta-analysis to quantify the individual and combined effects of ocean acidification (OA) and warming on consumption rates of predators and herbivores in marine ecosystems. Although the primary studies demonstrated that these environmental variables can have direct effects on consumers, our analyses highlight high variability in consumption rates in response to OA and warming. This variability likely reflects differences in local adaptation among species, as well as important methodological differences. For example, our results suggest that exposure of consumers to OA reduces consumption rates on average, yet consumption rates actually increase when both consumers and their resource(s) are concurrently exposed to the same conditions. We hypothesize that this disparity is due to increased vulnerability of prey or resource(s) in conditions of OA that offset declines in consumption. This hypothesis is supported by an analysis demonstrating clear declines in prey survival in studies that exposed only prey to future OA conditions. Our results illustrate how simultaneous OA and warming produce complex outcomes when species interact. Researchers should further explore other potential sources of variation in response, as well as the prey-driven component of any changes in consumption and the potential for interactive effects of OA and warming.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos , Cambio Climático , Calentamiento Global , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
4.
J Proteome Res ; 23(6): 2041-2053, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38782401

RESUMEN

Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.


Asunto(s)
Arrecifes de Coral , Metabolómica , Animales , Metabolómica/métodos , Metaboloma , Islas Virgenes de los Estados Unidos , Antozoos/metabolismo , Antozoos/química , Espectrometría de Masas/métodos , Ecosistema , Carbono/metabolismo , Carbono/química
5.
Cogn Affect Behav Neurosci ; 24(1): 42-59, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38093157

RESUMEN

Exposure to stressful events is associated with a range of negative physical and mental health outcomes, including depression. It is critical to understand the mechanisms through which stress impacts mental health to identify promising targets for prevention and intervention efforts. Low-reward responsiveness is thought to be a mechanism of effects of stress on negative health outcomes and can be reliably measured at the neurophysiological level by using event-related potentials (ERPs), such as the reward positivity (RewP) component. The goal of this systematic review and preliminary meta-analysis was to examine evidence of associations between stress and alterations in reward responsiveness measured using ERPs. Through a systematic review of the literature, 23 studies examining the effects of laboratory-induced stressors and naturalistic stressors or perceived stress on reward responsiveness met study criteria, 13 of which were included in the meta-analysis. Most studies were conducted in undergraduate and community samples, with three selected for specific conditions, and primarily in adults. The systematic review supported evidence of associations between laboratory-induced stressors and blunted reward responsiveness as measured by the RewP but there were more mixed results when considering direct associations between naturalistic stressors/perceived stress and reward-related ERPs. Given that all studies examined the RewP, the meta-analysis focused on this component and indicated that there was a weak, nonsignificant negative association between stress and RewP. Results emphasize the complex nature of relations between stress and reward-related ERPs and the need to consider alternative models in future research. We also provide reporting recommendations for ERP researchers to facilitate future meta-analyses.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Adulto , Humanos , Potenciales Evocados/fisiología , Motivación , Recompensa , Salud Mental , Depresión
6.
Proc Biol Sci ; 291(2027): 20241065, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043234

RESUMEN

Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Modelos Teóricos , Alismatales/fisiología
7.
Proc Biol Sci ; 291(2019): 20232447, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531406

RESUMEN

As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardened Acropora cervicornis to explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios.


Asunto(s)
Antozoos , Humanos , Animales , Antozoos/fisiología , Arrecifes de Coral , Genotipo , Aclimatación/fisiología , Adaptación Fisiológica , Cambio Climático
8.
Mol Ecol ; : e17312, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426368

RESUMEN

The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations. To assess the factors influencing the population dynamics of this species, we applied generalised additive models. These models allowed us to quantify the relative contribution of temperature, nutrient levels, salinity, turbidity, concentrations of photosynthetic pigments, as well as chemical pollutants such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs), on copepod density. Temperature and Secchi depth, a proxy for turbidity, were the most important environmental variables predicting the densities of T. longicornis, followed by summed PAH and chlorophyll concentrations. Analysing gene expression in field-collected adults, we observed significant variation in metabolic and stress-response genes. Temperature correlated significantly with genes involved in proteolytic activities, and encoding heat shock proteins. Yet, concentrations of anthropogenic chemicals did not induce significant differences in the gene expression of genes involved in the copepod's fatty acid metabolism or well-known stress-related genes, such as glutathione transferases or cytochrome P450. Our study highlights the potential of gene expression biomonitoring and underscores the significance of a changing environment in future studies.

9.
Glob Chang Biol ; 30(5): e17336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775780

RESUMEN

Climate change and land-use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land-use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony-bottomed streams in a 7-week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7-day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment-impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2-enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Sedimentos Geológicos , Invertebrados , Ríos , Animales , Dióxido de Carbono/análisis , Sedimentos Geológicos/análisis , Invertebrados/fisiología , Calor , Movimientos del Agua , Ecosistema
10.
Glob Chang Biol ; 30(1): e17074, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273545

RESUMEN

Tropical regions contain ecologically and socio-economically important habitats, and are home to about 3.8 billion people, many of which directly depend on tropical coastal waters for their well-being. At the basis of these ecosystems are biogeochemical processes. Climate change is expected to have a greater impact in the tropics compared to temperate regions because of the relatively stable environmental conditions found there. However, it was surprising to find only 660 research articles published focusing on the impact of climate change on the biogeochemistry of coastal tropical waters compared to 4823 for temperate waters. In this perspective, we highlight important topics in need of further research. Specifically, we suggest that in tropical regions compared to temperate counterparts climate change stressors will be experienced differently, that organisms have a lower acclimation capacity, and that long-term baseline biogeochemical datasets useful for quantifying future changes are lacking. The low number of research papers on the impacts of climate change in coastal tropical regions is likely due to a mix of reasons including limited resources for research and limited number of long time series in many developing tropical countries. Finally, we propose some action points that we hope will stimulate more studies in tropical coastal waters.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Aclimatación , Clima Tropical
11.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994377

RESUMEN

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Asunto(s)
Cianobacterias , Fitoplancton , Lagos/microbiología , Sustancias Húmicas , Eutrofización , Nutrientes , Fósforo/análisis , China
12.
Stress ; 27(1): 2327328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38497496

RESUMEN

OBJECTIVES: The purpose of this study was to determine the relationship between fetal exposure to maternal prenatal stressors and infant parasympathetic (PNS) and sympathetic (SNS) nervous function at 3 timepoints across the first year of life. BACKGROUND: Autonomic nervous system impairments may mediate associations between gestational exposure to stressors and later infant health problems. Heart rate variability (HRV) provides a sensitive index of PNS and SNS function. However, no studies have assessed longitudinal associations between prenatal stressors and infant HRV measures of both PNS and SNS over the first year of life. METHODS: During the third trimester of pregnancy, 233 women completed measures of life stressors and depression. At 1, 6 and 12 months of age, a stressor protocol was administered while infant electrocardiographic (ECG) data were collected from a baseline through a post-stressor period. HRV measures of PNS and SNS activity (HF, LF, LF/HF ratio) were generated from ECG data. We used multilevel regression to examine the aims, adjusting for maternal depression and neonatal morbidity. RESULTS: There were no associations between prenatal stressors and any baseline or reactivity HRV metric over the infant's first year of life. However, exposure to more stressors was associated with lower post-stressor LF HRV at both 6 (ß = -.44, p = .001) and 12 (ß = -.37, p = .005) months of age. CONCLUSIONS: Findings suggest potential alterations in development of the vagally mediated baroreflex function as a result of exposure to prenatal stressors, with implications for the infants' ability to generate a resilient recovery in response to stressors.


Asunto(s)
Sistema Nervioso Autónomo , Estrés Psicológico , Lactante , Recién Nacido , Embarazo , Humanos , Femenino , Electrocardiografía , Familia , Frecuencia Cardíaca
13.
Arch Microbiol ; 206(6): 285, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816572

RESUMEN

Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.


Asunto(s)
Brucella abortus , Regulación Bacteriana de la Expresión Génica , Brucella abortus/genética , Brucella abortus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transcripción Genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Estrés Fisiológico , Animales , Macrófagos/microbiología
14.
J Exp Biol ; 227(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38774939

RESUMEN

Anurans undergo significant physiological changes when exposed to environmental stressors such as low temperatures and humidity. Energy metabolism and substrate management play a crucial role in their survival success. Therefore, understanding the role of the gluconeogenic pathway and demonstrating its existence in amphibians is essential. In this study, we exposed the subtropical frog Boana pulchella to cooling (-2.5°C for 24 h) and dehydration conditions (40% of body water loss), followed by recovery (24 h), and assessed gluconeogenesis activity from alanine, lactate, glycerol and glutamine in the liver, muscle and kidney. We report for the first time that gluconeogenesis activity by 14C-alanine and 14C-lactate conversion to glucose occurs in the muscle tissue of frogs, and this tissue activity is influenced by environmental conditions. Against the control group, liver gluconeogenesis from 14C-lactate and 14C-glycerol was lower during cooling and recovery (P<0.01), and gluconeogenesis from 14C-glutamine in the kidneys was also lower during cooling (P<0.05). In dehydration exposure, gluconeogenesis from 14C-lactate in the liver was lower during recovery, and that from 14C-alanine in the muscle was lower during dehydration (P<0.05). Moreover, we observed that gluconeogenesis activity and substrate preference respond differently to cold and dehydration. These findings highlight tissue-specific plasticity dependent on the nature of the encountered stressor, offering valuable insights for future studies exploring this plasticity, elucidating the importance of the gluconeogenic pathway and characterizing it in anuran physiology.


Asunto(s)
Anuros , Frío , Deshidratación , Gluconeogénesis , Animales , Gluconeogénesis/fisiología , Anuros/fisiología , Anuros/metabolismo , Deshidratación/fisiopatología , Hígado/metabolismo , Riñón/metabolismo , Riñón/fisiología , Músculos/metabolismo , Músculos/fisiología , Masculino
15.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39140251

RESUMEN

Ultraviolet radiation (UVR) is a pervasive factor that has shaped the evolution of life on Earth. Ambient levels of UVR mediate key biological functions but can also cause severe lethal and sublethal effects in a wide range of organisms. Furthermore, UVR is a powerful modulator of the effects of other environmental factors on organismal physiology, such as temperature, disease, toxicology and pH, among others. This is critically important in the context of global change, where understanding the effects of multiple stressors is a key challenge for experimental biologists. Ecological physiologists rarely afford UVR discussion or include UVR in experimental design, even when it is directly relevant to their study system. In this Commentary, we provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into experimental designs to improve the ecological realism of their experiments.


Asunto(s)
Rayos Ultravioleta , Animales , Estrés Fisiológico , Proyectos de Investigación
16.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38779934

RESUMEN

Efficient water balance is key to insect success. However, the hygric environment is changing with climate change; although there are compelling models of thermal vulnerability, water balance is often neglected in predictions. Insects survive desiccating conditions by reducing water loss, increasing their total amount of water (and replenishing it) and increasing their tolerance of dehydration. The physiology underlying these traits is reasonably well understood, as are the sources of variation and phenotypic plasticity. However, water balance and thermal tolerance intersect at high temperatures, such that mortality is sometimes determined by dehydration, rather than heat (especially during long exposures in dry conditions). Furthermore, water balance and thermal tolerance sometimes interact to determine survival. In this Commentary, we propose identifying a threshold where the cause of mortality shifts between dehydration and temperature, and that it should be possible to predict this threshold from trait measurements (and perhaps eventually a priori from physiological or -omic markers).


Asunto(s)
Cambio Climático , Insectos , Animales , Insectos/fisiología , Deshidratación , Agua/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Termotolerancia
17.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856174

RESUMEN

Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.


Asunto(s)
Metabolismo Energético , Plumas , Compuestos de Metilmercurio , Muda , Estrés Fisiológico , Animales , Plumas/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Muda/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Gorriones/fisiología , Metabolismo Basal/efectos de los fármacos , Masculino , Estaciones del Año , Femenino
18.
Ecol Appl ; 34(4): e2977, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706047

RESUMEN

Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modeling approach (Ecosim) with previous data from community-level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well-managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near-future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade-off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate-driven biodiversity change and its effects on ecosystem processes.


Asunto(s)
Calentamiento Global , Modelos Biológicos , Océanos y Mares , Agua de Mar , Animales , Agua de Mar/química , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Ecosistema , Biomasa , Explotaciones Pesqueras , Cambio Climático , Acidificación de los Océanos
19.
Biol Lett ; 20(2): 20230346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378140

RESUMEN

Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.


Asunto(s)
Cambio Climático , Epigénesis Genética , Animales , Peces/fisiología , Temperatura , Hipoxia
20.
Artículo en Inglés | MEDLINE | ID: mdl-38994870

RESUMEN

The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda