Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446857

RESUMEN

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Asunto(s)
Arterias , Benchmarking , Perfusión , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38388425

RESUMEN

Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Hierro , Imagen por Resonancia Magnética , Memoria Episódica , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Anciano , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hierro/metabolismo , Persona de Mediana Edad
3.
Neuroimage ; 292: 120607, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614372

RESUMEN

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Asunto(s)
Enfermedad de Alzheimer , Región CA1 Hipocampal , Giro Dentado , Imagen por Resonancia Magnética , Trastornos de la Memoria , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Anciano , Giro Dentado/diagnóstico por imagen , Giro Dentado/patología , Persona de Mediana Edad , Región CA1 Hipocampal/diagnóstico por imagen , Región CA1 Hipocampal/patología , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/patología , Adulto , Péptidos beta-Amiloides/metabolismo
4.
Hippocampus ; 34(6): 302-308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593279

RESUMEN

Researchers who study the human hippocampus are naturally interested in how its subfields function. However, many researchers are precluded from examining subfields because their manual delineation from magnetic resonance imaging (MRI) scans (still the gold standard approach) is time consuming and requires significant expertise. To help ameliorate this issue, we present here two protocols, one for 3T MRI and the other for 7T MRI, that permit automated hippocampus segmentation into six subregions, namely dentate gyrus/cornu ammonis (CA)4, CA2/3, CA1, subiculum, pre/parasubiculum, and uncus along the entire length of the hippocampus. These protocols are particularly notable relative to existing resources in that they were trained and tested using large numbers of healthy young adults (n = 140 at 3T, n = 40 at 7T) whose hippocampi were manually segmented by experts from MRI scans. Using inter-rater reliability analyses, we showed that the quality of automated segmentations produced by these protocols was high and comparable to expert manual segmenters. We provide full open access to the automated protocols, and anticipate they will save hippocampus researchers a significant amount of time. They could also help to catalyze subfield research, which is essential for gaining a full understanding of how the hippocampus functions.


Asunto(s)
Hipocampo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Hipocampo/diagnóstico por imagen , Masculino , Adulto , Femenino , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Reproducibilidad de los Resultados
5.
Hippocampus ; 34(2): 100-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145465

RESUMEN

In this study, we aimed to understand the contributions of hippocampal anteroposterior subregions (head, body, tail) and subfields (cornu ammonis 1-3 [CA1-3], dentate gyrus [DG], and subiculum [Sub]) and encoding strategies to the age-related verbal memory decline. Healthy participants were administered the California Verbal Learning Test-II to evaluate verbal memory performance and encoding strategies and underwent 4.7 T magnetic resonance imaging brain scan with subsequent hippocampal subregions and subfields manual segmentation. While total hippocampal volume was not associated with verbal memory performance, we found the volumes of the posterior hippocampus (body) and Sub showed significant effects on verbal memory performance. Additionally, the age-related volume decline in hippocampal body volume contributed to lower use of semantic clustering, resulting in lower verbal memory performance. The effect of Sub on verbal memory was statistically independent of encoding strategies. While total CA1-3 and DG volumes did not show direct or indirect effects on verbal memory, exploratory analyses with DG and CA1-3 volumes within the hippocampal body subregion suggested an indirect effect of age-related volumetric reduction on verbal memory performance through semantic clustering. As semantic clustering is sensitive to age-related hippocampal volumetric decline but not to the direct effect of age, further investigation of mechanisms supporting semantic clustering can have implications for early detection of cognitive impairments and decline.


Asunto(s)
Envejecimiento Saludable , Longevidad , Adulto , Humanos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Memoria , Región CA3 Hipocampal , Imagen por Resonancia Magnética/métodos
6.
Hippocampus ; 34(4): 204-216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214182

RESUMEN

Developmental topographical disorientation (DTD) refers to the lifelong inability to orient by means of cognitive maps in familiar surroundings despite otherwise well-preserved general cognitive functions, and the absence of any acquired brain injury or neurological condition. While reduced functional connectivity between the hippocampus and other brain regions has been reported in DTD individuals, no structural differences in gray matter tissue for the whole brain neither for the hippocampus were detected. Considering that the human hippocampus is the main structure associated with cognitive map-based navigation, here, we investigated differences in morphological and morphometric hippocampal features between individuals affected by DTD (N = 20) and healthy controls (N = 238). Specifically, we focused on a developmental anomaly of the hippocampus that is characterized by the incomplete infolding of hippocampal subfields during fetal development, giving the hippocampus a more round or pyramidal shape, called incomplete hippocampal inversion (IHI). We rated IHI according to standard criteria and extracted hippocampal subfield volumes after FreeSurfer's automatic segmentation. We observed similar IHI prevalence in the group of individuals with DTD with respect to the control population. Neither differences in whole hippocampal nor major hippocampal subfield volumes have been observed between groups. However, when assessing the IHI independent criteria, we observed that the hippocampus in the DTD group is more medially positioned comparing to the control group. In addition, we observed bigger hippocampal fissure volume for the DTD comparing to the control group. Both of these findings were stronger for the right hippocampus comparing to the left. Our results provide new insights regarding the hippocampal morphology of individuals affected by DTD, highlighting the role of structural anomalies during early prenatal development in line with the developmental nature of the spatial disorientation deficit.


Asunto(s)
Confusión , Imagen por Resonancia Magnética , Humanos , Encéfalo , Hipocampo/diagnóstico por imagen , Lóbulo Temporal
7.
Psychol Med ; : 1-12, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450444

RESUMEN

BACKGROUND: Physical sequelae of anorexia nervosa (AN) include a marked reduction in whole brain volume and subcortical structures such as the hippocampus. Previous research has indicated aberrant levels of inflammatory markers and growth factors in AN, which in other populations have been shown to influence hippocampal integrity. METHODS: Here we investigated the influence of concentrations of two pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]) and brain-derived neurotrophic factor (BDNF) on the whole hippocampal volume, as well as the volumes of three regions (the hippocampal body, head, and tail) and 18 subfields bilaterally. Investigations occurred both cross-sectionally between acutely underweight adolescent/young adult females with AN (acAN; n = 82) and people recovered from AN (recAN; n = 20), each independently pairwise age-matched with healthy controls (HC), and longitudinally in acAN after partial renourishment (n = 58). Hippocampal subfield volumes were quantified using FreeSurfer. Concentrations of molecular factors were analyzed in linear models with hippocampal (subfield) volumes as the dependent variable. RESULTS: Cross-sectionally, there was no evidence for an association between IL-6, TNF-α, or BDNF and between-group differences in hippocampal subfield volumes. Longitudinally, increasing concentrations of BDNF were positively associated with longitudinal increases in bilateral global hippocampal volumes after controlling for age, age2, estimated total intracranial volume, and increases in body mass index (BMI). CONCLUSIONS: These findings suggest that increases in BDNF may contribute to global hippocampal recovery over and above increases in BMI during renourishment. Investigations into treatments targeted toward increasing BDNF in AN may be warranted.

8.
J Magn Reson Imaging ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970314

RESUMEN

BACKGROUND: Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE: To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE: Cross-sectional, prospective. SUBJECTS: A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE: 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT: The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS: This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS: The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION: GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

9.
Cereb Cortex ; 33(18): 10207-10220, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37557916

RESUMEN

The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.


Asunto(s)
Región CA2 Hipocampal , Hipocampo , Humanos , Región CA1 Hipocampal , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas
10.
Alzheimers Dement ; 20(7): 4649-4662, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38877668

RESUMEN

INTRODUCTION: The entorhinal cortex (EC) and perirhinal cortex (PC) are vulnerable to Alzheimer's disease. A triggering factor may be the interaction of vascular dysfunction and tau pathology. METHODS: We imaged post mortem human tissue at 100 µm3 with 7 T magnetic resonance imaging and manually labeled individual blood vessels (mean = 270 slices/case). Vessel density was quantified and compared per EC subfield, between EC and PC, and in relation to tau and TAR DNA-binding protein 43 (TDP-43) semiquantitative scores. RESULTS: PC was more vascularized than EC and vessel densities were higher in posterior EC subfields. Tau and TDP-43 strongly correlated with vasculature density and subregions with severe tau at the preclinical stage had significantly greater vessel density than those with low tau burden. DISCUSSION: These data impact cerebrovascular maps, quantification of subfield vasculature, and correlation of vasculature and pathology at early stages. The ordered association of vessel density, and tau or TDP-43 pathology, may be exploited in a predictive context. HIGHLIGHTS: Vessel density correlates with phosphorylated tau (p-tau) burden in entorhinal and perirhinal cortices. Perirhinal area 35 and posterior entorhinal cortex showed greatest p-tau burden but also the highest vessel density in the preclinical phase of Alzheimer's disease. We combined an ex vivo magnetic resonance imaging model and histopathology to demonstrate the 3D reconstruction of intracortical vessels and its spatial relationship to the pathology.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Unión al ADN , Corteza Entorrinal , Proteínas tau , Humanos , Corteza Entorrinal/patología , Corteza Entorrinal/metabolismo , Proteínas tau/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Fosforilación , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Anciano , Anciano de 80 o más Años , Imagen por Resonancia Magnética , Vasos Sanguíneos/patología , Vasos Sanguíneos/metabolismo
11.
Alzheimers Dement ; 20(5): 3157-3166, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38477490

RESUMEN

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Disfunción Cognitiva , Tomografía de Emisión de Positrones , Sinapsis , Humanos , Masculino , Femenino , Apolipoproteína E4/genética , Anciano , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Sinapsis/patología , Sinapsis/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Genotipo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Persona de Mediana Edad , Alelos , Anciano de 80 o más Años , Encéfalo/patología , Encéfalo/diagnóstico por imagen
12.
Acta Neuropsychiatr ; : 1-7, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528655

RESUMEN

BACKGROUND: Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS: C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS: The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION: This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.

13.
J Neurosci ; 42(42): 7957-7968, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261271

RESUMEN

Aging and neurodegenerative diseases lead to decline in thinking and memory ability. The subfields of the hippocampus (HCsf) play important roles in memory formation and recall. Imaging techniques sensitive to the underlying HCsf tissue microstructure can reveal unique structure-function associations and their vulnerability in aging and disease. The goal of this study was to use magnetic resonance elastography (MRE), a noninvasive MR imaging-based technique that can quantitatively image the viscoelastic mechanical properties of tissue to determine the associations of HCsf stiffness with different cognitive domains across the lifespan. Eighty-eight adult participants completed the study (age 23-81 years, male/female 36/51), in which we aimed to determine which HCsf regions most strongly correlated with different memory performance outcomes and if viscoelasticity of specific HCsf regions mediated the relationship between age and performance. Our results revealed that both interference cost on a verbal memory task and relational memory task performance were significantly related to cornu ammonis 1-2 (CA1-CA2) stiffness (p = 0.018 and p = 0.011, respectively), with CA1-CA2 stiffness significantly mediating the relationship between age and interference cost performance (p = 0.031). There were also significant associations between delayed free verbal recall performance and stiffness of both the dentate gyrus-cornu ammonis 3 (DG-CA3; p = 0.016) and subiculum (SUB; p = 0.032) regions. This further exemplifies the functional specialization of HCsf in declarative memory and the potential use of MRE measures as clinical biomarkers in assessing brain health in aging and disease.SIGNIFICANCE STATEMENT Hippocampal subfields are cytoarchitecturally unique structures involved in distinct aspects of memory processing. Magnetic resonance elastography is a technique that can noninvasively image tissue viscoelastic mechanical properties, potentially serving as sensitive biomarkers of aging and neurodegeneration related to functional outcomes. High-resolution in vivo imaging has invigorated interest in determining subfield functional specialization and their differential vulnerability in aging and disease. Applying MRE to probe subfield-specific cognitive correlates will indicate that measures of subfield stiffness can determine the integrity of structures supporting specific domains of memory performance. These findings will further validate our high-resolution MRE method and support the potential use of subfield stiffness measures as clinical biomarkers in classifying aging and disease states.


Asunto(s)
Hipocampo , Memoria , Adulto , Humanos , Femenino , Masculino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Pruebas Neuropsicológicas , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Cognición , Recuerdo Mental , Imagen por Resonancia Magnética/métodos
14.
Neuroimage ; 269: 119936, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781113

RESUMEN

As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.


Asunto(s)
COVID-19 , Pandemias , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Encéfalo , Corteza Prefrontal
15.
Neurobiol Dis ; 181: 106127, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061167

RESUMEN

Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aß) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aß + (n = 24) and Aß- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aß and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aß to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Atrofia/patología , Genotipo , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo , Lóbulo Temporal/metabolismo
16.
Hippocampus ; 33(9): 1067-1072, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37132590

RESUMEN

The hippocampus is composed of cytoarchitecturally distinct subfields that support specific memory functions. Variations in total hippocampal volume across development have been linked to socioeconomic status (SES), a proxy for access to material resources, medical care, and quality education. High childhood household SES is associated with greater cognitive abilities in adulthood. Currently, it is not known whether household SES differentially impacts specific hippocampal subfield volumes. We assessed susceptibility of subfields to variations in household SES across development in a sample of 167 typically developing 5- to 25-year-old. Bilateral cornu ammonis (CA) 1-2, combined CA3-dentate gyrus (DG), and subiculum (Sub) volumes were measured by highly reliable manual segmentation of high-resolution T2-weighted images and adjusted for intracranial volume. A summary component score of SES measures (paternal education, maternal education, and income-to-needs ratio) was used to examine variability in volumes across ages. We did not identify age-related differences in any of the regional volumes, nor did age modify SES-related effects. Controlling for age, larger volumes of CA3-DG and CA1-2 were associated with lower SES, while Sub volume was not. Overall, these findings support the specific impact of SES on CA3-DG and CA1-2 and highlight the importance of considering environmental influences on hippocampal subfield development.


Asunto(s)
Región CA1 Hipocampal , Hipocampo , Cognición , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Memoria , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto
17.
Hum Brain Mapp ; 44(16): 5485-5503, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37615057

RESUMEN

The hippocampus is classically divided into mesoscopic subfields which contain varying microstructure that contribute to their unique functional roles. It has been challenging to characterize this microstructure with current magnetic resonance based neuroimaging techniques. In this work, we used diffusion magnetic resonance imaging (dMRI) and a novel surface-based approach in the hippocampus which revealed distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy for myelin content, fractional anisotropy, and mean diffusivity. We used the neurite orientation dispersion and density imaging (NODDI) model optimized for grey matter diffusivity to characterize neurite density and dispersion. We found that neurite dispersion was highest in the cornu ammonis (CA) 1 and subiculum subfields which likely captures the large heterogeneity of tangential and radial fibres, such as the Schaffer collaterals, perforant path, and pyramidal neurons. Neurite density and T1w/T2w were highest in the subiculum and CA3 and lowest in CA1, which may reflect known myeloarchitectonic differences between these subfields. Using a simple logistic regression model, we showed that neurite density, dispersion, and T1w/T2w measures were separable across the subfields, suggesting that they may be sensitive to the known variability in subfield cyto- and myeloarchitecture. We report macrostructural measures of gyrification, thickness, and curvature that were in line with ex vivo descriptions of hippocampal anatomy. We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF) approach to capture co-varying regions of macro- and microstructure across the hippocampus. The clusters were highly variable along the medial-lateral (proximal-distal) direction, likely reflecting known differences in morphology, cytoarchitectonic profiles, and connectivity. Finally, we show that by examining the main direction of diffusion relative to canonical hippocampal axes, we could identify regions with stereotyped microstructural orientations that may map onto specific fibre pathways, such as the Schaffer collaterals, perforant path, fimbria, and alveus. These results highlight the value of combining in vivo dMRI with computational approaches for capturing hippocampal microstructure, which may provide useful features for understanding cognition and for diagnosis of disease states.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Sustancia Gris , Neuritas/patología , Sustancia Blanca/patología
18.
Acta Neuropathol ; 146(3): 415-432, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382680

RESUMEN

Hippocampal sclerosis of aging (HS-A) is a common age-related neuropathological lesion characterized by neuronal loss and astrogliosis in subiculum and CA1 subfield of hippocampus. HS-A is associated with cognitive decline that mimics Alzheimer's disease. Pathological diagnosis of HS-A is traditionally binary based on presence/absence of the lesion. We compared this traditional measure against our novel quantitative measure for studying the relationship between HS-A and other neuropathologies and cognitive impairment. We included 409 participants from The 90+ study with neuropathological examination and longitudinal neuropsychological assessments. In those with HS-A, we examined digitized H&E and LFB stained hippocampal slides. The length of HS-A in each subfield of hippocampus and subiculum, each further divided into three subregions, was measured using Aperio eSlide Manager. For each subregion, the proportion affected by HS-A was calculated. Using regression models, both traditional/binary and quantitative measures were used to study the relationship between HS-A and other neuropathological changes and cognitive outcomes. HS-A was present in 48 (12%) of participants and was always focal, primarily affecting CA1 (73%), followed by subiculum (9%); overlapping pathology (subiculum and CA1) affected 18% of individuals. HS-A was more common in the left (82%) than the right (25%) hemisphere and was bilateral in 7% of participants. HS-A traditional/binary assessment was associated with limbic-predominant age-related TDP-43 encephalopathy (LATE-NC; OR = 3.45, p < 0.001) and aging-related tau astrogliopathy (ARTAG; OR = 2.72, p = 0.008). In contrast, our quantitative approach showed associations between the proportion of HS-A (CA1/subiculum/combined) and LATE-NC (p = 0.001) and arteriolosclerosis (p = 0.005). While traditional binary assessment of HS-A was associated with impaired memory (OR = 2.60, p = 0.007), calculations (OR = 2.16, p = 0.027), and orientation (OR = 3.56, p < 0.001), our quantitative approach revealed additional associations with impairments in language (OR = 1.33, p = 0.018) and visuospatial domains (OR = 1.37, p = 0.006). Our novel quantitative method revealed associations between HS-A and vascular pathologies and impairment in cognitive domains that were not detected using traditional/binary measures.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Esclerosis del Hipocampo , Hipocampo , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Envejecimiento/patología , Cognición , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Esclerosis del Hipocampo/patología , Esclerosis del Hipocampo/fisiopatología , Hipocampo/patología , Hipocampo/fisiopatología , Modelos Logísticos , Neuropatología
19.
J Magn Reson Imaging ; 58(5): 1431-1440, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36808678

RESUMEN

BACKGROUND: Glutamate dysregulation is one of the key pathogenic mechanisms of major depressive disorder (MDD), and glutamate chemical exchange saturation transfer (GluCEST) has been used for glutamate measurement in some brain diseases but rarely in depression. PURPOSE: To investigate the GluCEST changes in hippocampus in MDD and the relationship between glutamate and hippocampal subregional volumes. STUDY TYPE: Cross-sectional. SUBJECTS: Thirty-two MDD patients (34% males; 22.03 ± 7.21 years) and 47 healthy controls (HCs) (43% males; 22.00 ± 3.28 years). FIELD STRENGTH/SEQUENCE: 3.0 T; magnetization prepared rapid gradient echo (MPRAGE) for three-dimensional T1-weighted images, two-dimensional turbo spin echo GluCEST, and multivoxel chemical shift imaging (CSI) for proton magnetic resonance spectroscopy (1 H MRS). ASSESSMENT: GluCEST data were quantified by magnetization transfer ratio asymmetry (MTRasym ) analysis and assessed by the relative concentration of 1 H MRS-measured glutamate. FreeSurfer was used for hippocampus segmentation. STATISTICAL TESTS: The independent sample t test, Mann-Whitney U test, Spearman's correlation, and partial correlation analysis were used. P < 0.05 was considered statistically significant. RESULTS: In the left hippocampus, GluCEST values were significantly decreased in MDD (2.00 ± 1.08 [MDD] vs. 2.62 ± 1.41 [HCs]) and showed a significantly positive correlation with Glx/Cr (r = 0.37). GluCEST values were significantly positively correlated with the volumes of CA1 (r = 0.40), subiculum (r = 0.40) in the left hippocampus and CA1 (r = 0.51), molecular_layer_HP (r = 0.50), GC-ML-DG (r = 0.42), CA3 (r = 0.44), CA4 (r = 0.44), hippocampus-amygdala-transition-area (r = 0.46), and the whole hippocampus (r = 0.47) in the right hippocampus. Hamilton Depression Rating Scale scores showed significantly negative correlations with the volumes of the left presubiculum (r = -0.40), left parasubiculum (r = -0.47), and right presubiculum (r = -0.41). DATA CONCLUSION: GluCEST can be used to measure glutamate changes and help to understand the mechanism of hippocampal volume loss in MDD. Hippocampal volume changes are associated with disease severity. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Trastorno Depresivo Mayor , Masculino , Humanos , Femenino , Trastorno Depresivo Mayor/diagnóstico por imagen , Ácido Glutámico , Estudios Transversales , Depresión , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
20.
Stress ; 26(1): 2247102, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37771232

RESUMEN

Background: Despite the rapid increase in reports of exhaustion syndrome (ES) due to daily occupational stress, the mechanisms underlying ES are unknown. In the present study, we investigated whether occupational ES is associated with specific modifications of the subfields of the amygdala and hippocampus resembling those described in other chronic stress conditions. Special focus was paid to possible sex differences.Methods: As a follow up to our previous studies of occupational ES, we carried out MRI-based subfield segmentation of the hippocampus and amygdala volumes in 58 patients with occupational ES (22 males) and 65 age-matched controls (27 males) (age range 30-46 years).Results: There was a significant and bilateral enlargement of the lateral, basal and central nucleus of the amygdala in patients with ES (corrected for the total intracranial volume (ICV)). These differences were detected only in females. Higher values in the right central and right basal amygdala remained when the whole amygdala volume was used as reference, instead of the ICV. Notably, in female patients the volumes of these specific nuclei were positively correlated with the degree of perceived stress. No changes in the hippocampus subfields were detected in female or male patients.Conclusions: The findings underline that ES is a chronic stress condition, suggesting that not only extreme forms of stress, but also the everyday stress is associated with localized differences from controls in the amygdala. The absence of significant alterations among men with ES despite a similar degree of perceived stress supports the notion that women seem more susceptible to stress-related cerebral changes, and may explain the higher prevalence of ES among women.


Asunto(s)
Estrés Laboral , Estrés Psicológico , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estrés Psicológico/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética , Amígdala del Cerebelo/diagnóstico por imagen , Estrés Laboral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda