Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
Más filtros

Publication year range
1.
Infect Immun ; 92(3): e0045523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289122

RESUMEN

Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Ratones , Ratones Endogámicos BALB C , Melioidosis/tratamiento farmacológico , Melioidosis/prevención & control , Antibacterianos/uso terapéutico , Vacunación , Vacunas de Subunidad , Modelos Animales de Enfermedad
2.
Biochem Biophys Res Commun ; 711: 149919, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608435

RESUMEN

Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina G , Ratones Endogámicos BALB C , SARS-CoV-2 , Animales , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Humanos , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación
3.
Plant Biotechnol J ; 22(5): 1402-1416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38163285

RESUMEN

Immunoglobulin G (IgG)-based fusion proteins have been widely exploited as a potential vaccine delivery platform but in the absence of exogenous adjuvants, the lack of robust immunity remains an obstacle. Here, we report on a key modification that overcomes that obstacle. Thus, we constructed an IgG-Fc vaccine platform for dengue, termed D-PCF, which in addition to a dengue antigen incorporates the cholera toxin non-toxic B subunit (CTB) as a molecular adjuvant, with all three proteins expressed as a single polypeptide. Following expression in Nicotiana benthamiana plants, the D-PCF assembled as polymeric structures of similar size to human IgM, a process driven by the pentamerization of CTB. A marked improvement of functional properties in vitro and immunogenicity in vivo over a previous iteration of the Fc-fusion protein without CTB [1] was demonstrated. These include enhanced antigen presenting cell binding, internalization and activation, complement activation, epithelial cell interactions and ganglioside binding, as well as more efficient polymerization within the expression host. Following immunization of mice with D-PCF by a combination of systemic and mucosal (intranasal) routes, we observed robust systemic and mucosal immune responses, as well as systemic T cell responses, significantly higher than those induced by a related Fc-fusion protein but without CTB. The induced antibodies could bind to the domain III of the dengue virus envelope protein from all four dengue serotypes. Finally, we also demonstrated feasibility of aerosolization of D-PCF as a prerequisite for vaccine delivery by the respiratory route.


Asunto(s)
Dengue , Vacunas , Animales , Ratones , Humanos , Toxina del Cólera/química , Toxina del Cólera/metabolismo , Proteínas de Plantas , Adyuvantes Inmunológicos , Péptidos , Inmunoglobulina G , Ratones Endogámicos BALB C
4.
J Virol ; 97(2): e0169422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719241

RESUMEN

Viral subunit vaccines contain the specific antigen deemed most important for development of protective immune responses. Typically, the chosen antigen is a surface protein involved in cellular entry of the virus, and neutralizing antibodies may prevent this. For influenza, hemagglutinin (HA) is thus a preferred antigen. However, the natural trimeric form of HA is often not considered during subunit vaccine development. Here, we have designed a vaccine format that maintains the trimeric HA conformation while targeting antigen toward major histocompatibility complex class II (MHCII) molecules or chemokine receptors on antigen-presenting cells (APC) for enhanced immunogenicity. Results demonstrated that a single DNA vaccination induced strong antibody and T-cell responses in mice. Importantly, a single DNA vaccination also protected mice from lethal challenges with influenza viruses H1N1 and H5N1. To further evaluate the versatility of the format, we developed MHCII-targeted HA from influenza A/California/04/2009(H1N1) as a protein vaccine and benchmarked this against Pandemrix and Flublok. These vaccine formats are different, but similar immune responses obtained with lower vaccine doses indicated that the MHCII-targeted subunit vaccine has an immunogenicity and efficacy that warrants progression to larger animals and humans. IMPORTANCE Subunit vaccines present only selected viral proteins to the immune system and allow for safe and easy production. Here, we have developed a novel vaccine where influenza hemagglutinin is presented in the natural trimeric form and then steered toward antigen-presenting cells for increased immunogenicity. We demonstrate efficient induction of antibodies and T-cell responses, and demonstrate that the vaccine format can protect mice against influenza subtypes H1N1, H5N1, and H7N1.


Asunto(s)
Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Ratones , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N1 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Vacunas de Subunidad/inmunología , Vacunas de ADN/inmunología , Células Presentadoras de Antígenos/inmunología , Linfocitos T/inmunología
5.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37846983

RESUMEN

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Vacunas de Subunidad , Animales , Femenino , Humanos , Ratones , Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Deltacoronavirus , Porcinos , Vacunas de Subunidad/administración & dosificación
6.
J Med Virol ; 96(7): e29793, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023111

RESUMEN

Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Vacunas de Subunidad , Vacunas de ARNm , Humanos , Inmunoglobulina G/sangre , Femenino , Anticuerpos Antivirales/sangre , Masculino , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Adulto , Persona de Mediana Edad , Vacunas contra la COVID-19/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/administración & dosificación , Glicosilación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anciano , ARN Mensajero/genética , Adulto Joven , Vacunas de Subunidades Proteicas
7.
Microb Pathog ; 190: 106631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537761

RESUMEN

The formation of long-lived T-cell memory is a critical goal of vaccines against intracellular pathogens like Mycobacterium tuberculosis (M. tuberculosis). In this study, to access the adjuvant effect of rapamycin on tuberculosis subunit vaccine, we treated mice with rapamycin during the course of vaccination and then monitored the vaccine-specific long-term memory T cell recall responses and protective ability against mycobacterial organisms. Compared with the mice that received vaccine alone, rapamycin treatment enhanced the vaccine induced long-term IFN-γ and IL-2 recall responses, promoted the development of TCM (central memory) like cells and improved the long-term proliferative ability of lymphocytes. Long-duration (total 53 days) of low-dose rapamycin (75 µg/kg/day) treatment generated stronger vaccine-specific memory T cell responses than short-duration treatment (total 25 days). Moreover, rapamycin improved the vaccine's long-term protective efficacy, which resulted in a better reduction of 0.89-log10 CFU of mycobacterial organisms in the lungs compared with control without rapamycin treatment. These findings suggest that rapamycin may be considered in designing TB subunit vaccine regimens or as potential adjuvant to enhance vaccine-induced T cell memory response and to prolong the longevity of vaccine's protective efficacy.


Asunto(s)
Interferón gamma , Mycobacterium tuberculosis , Sirolimus , Vacunas contra la Tuberculosis , Tuberculosis , Vacunas de Subunidad , Animales , Sirolimus/farmacología , Ratones , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/efectos de los fármacos , Vacunas contra la Tuberculosis/inmunología , Vacunas de Subunidad/inmunología , Tuberculosis/prevención & control , Tuberculosis/inmunología , Interferón gamma/metabolismo , Interleucina-2 , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Células T de Memoria/inmunología , Células T de Memoria/efectos de los fármacos , Pulmón/microbiología , Pulmón/inmunología , Memoria Inmunológica , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Modelos Animales de Enfermedad , Vacunación
8.
Microb Pathog ; 193: 106759, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906494

RESUMEN

Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.


Asunto(s)
Anticuerpos Antibacterianos , Proteínas Bacterianas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Proteínas Recombinantes , Infecciones Estreptocócicas , Vacunas Estreptocócicas , Streptococcus suis , Vacunas de Subunidad , Streptococcus suis/inmunología , Streptococcus suis/genética , Animales , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Ratones , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/genética , Serogrupo , Citocinas/metabolismo , Femenino , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Inmunidad Humoral , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Porcinos , Biología Computacional
9.
Microb Pathog ; 195: 106751, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880314

RESUMEN

Short-beak and dwarfism syndrome (SBDS) is a new disease caused by a genetic variant of goose parvovirus in ducks that results in enormous economic losses for the waterfowl industry. Currently, there is no commercial vaccine for this disease, so it is urgent to develop a safer and more effective vaccine to prevent this disease. In this study, we optimized the production conditions to enhance the expression of the recombinant VP2 protein and identified the optimal conditions for subsequent large-scale expression. Furthermore, the protein underwent purification via nickel column affinity chromatography, followed by concentration using ultrafiltration tube. Subsequently, it was observed by transmission electron microscopy (TEM) that the NGPV recombinant VP2 protein assembled into virus-like particles (VLPs) resembling those of the original virus. Finally, the ISA 78-VG adjuvant was mixed with the NGPV-VP2 VLPs to be prepared as a subunit vaccine. Furthermore, both agar gel precipitation test (AGP) and serum neutralization test demonstrated that NGPV VLP subunit vaccine could induce the increase of NGPV antibody in breeding ducks. The ducklings were also challenged with the NGPV, and the results showed that the maternal antibody level could provide sufficient protection to the ducklings. These results indicated that the use of the NGPV VLP subunit vaccine based on the baculovirus expression system could facilitate the large-scale development of a reliable vaccine in the future.

10.
Arch Microbiol ; 206(8): 352, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012499

RESUMEN

Tuberculosis (TB) is one of the infectious diseases caused by the pathogen Mycobacterium tuberculosis that continuously threatens the global human health. Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine that has been used clinically to prevent tuberculosis in recent centuries, but its limitations in preventing latent infection and reactivation of tuberculosis do not provide full protection. In this study, we selected the membrane-associated antigen Rv1513 of Mycobacterium. In order to achieve stable expression and function of the target gene, the prokaryotic expression recombinant vector pET30b-Rv1513 was constructed and expressed and purified its protein. Detection of IFN- γ levels in the peripheral blood of TB patients stimulated by whole blood interferon release assay (WBIA) and multi-microsphere flow immunofluorescence luminescence (MFCIA) revealed that the induced production of cytokines, such as IFN-γ and IL-6, was significantly higher than that in the healthy group. Rv1513 combined with adjuvant DMT (adjuvant system liposomes containing dimethyldioctadecylammonium bromide (DDA), monophospholipid A (MPL), and trehalose-660-dibenzoic acid (TDB)) was used to detect serum specific antibodies, cytokine secretion from splenic suprasplenic cell supernatants, and multifunctional T-cell levels in splenocytes in immunised mice. The levels of IFN-γ, TNF-α, and IL-2 secreted by mouse splenocytes were found in the Rv1513+DMT group and the BCG+Rv1513+DMT group. The serum levels of IgG and its subclasses and the number of IFN-γ+T cells, TNF-α+T and IFN-γ+TNF-α+T cells in the induced CD4+/CD8+T cells in mice were significantly higher than those in the BCG group, and the highest levels were found in the BCG+Rv1513+DMT group. These findings suggest that Rv1513/DMT may serve as a potential subunit vaccine candidate that may be effective as a booster vaccine after the first BCG vaccination.


Asunto(s)
Mycobacterium tuberculosis , Células TH1 , Vacunas contra la Tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/genética , Ratones , Humanos , Células TH1/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis/inmunología , Tuberculosis/prevención & control , Tuberculosis/microbiología , Femenino , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Citocinas/metabolismo , Citocinas/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adulto
11.
Protein Expr Purif ; 215: 106412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104792

RESUMEN

Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Aeromonas veronii/genética , Inmunización , Proteínas Recombinantes/genética , Vacunas de Subunidad/genética , Enfermedades de los Peces/prevención & control
12.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499217

RESUMEN

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Asunto(s)
Enfermedades de los Peces , Vacunas de ADN , Vibriosis , Vibrio , Animales , Vibriosis/prevención & control , Vibriosis/veterinaria , Valina , Vacunas Bacterianas , Peces , Enfermedades de los Peces/prevención & control
13.
Fish Shellfish Immunol ; 151: 109665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830521

RESUMEN

Bacterial septicemia in freshwater fish is mainly caused by Aeromonas hydrophila infection, which affects the development of aquaculture industry. In the context of sustainable aquaculture, subunit vaccines are of great values because they play positive roles in reducing the overuse of antibiotics and protecting aquatic animals against bacterial infection. In this study, the recombinant outer membrane protein OmpTS of A. hydrophila were used as subunit vaccine to immunize Megalobrama amblycephala, and its immunoprotective effect and host immune responses were evaluated. The survival rates of the vaccinated groups after bacterial infection were significantly higher than that of the control group, especially of the OmpTS high-dose vaccinated group. The better protective effects of vaccinated groups might be attributed to the increased levels of serum IgM-specific antibody titer, the reduced relative abundance of A. hydrophila in various tissues, the increased number of immune-positive cells with different epitopes, the up-regulated expression levels of immune-related genes, and the enhanced activities of antibacterial enzymes. In conclusion, OmpTS subunit vaccine could strongly induce host immune responses in M. amblycephala, thereby enhancing both cellular and humoral immunity, which exhibited excellent and effective immunoprotective efficacy.


Asunto(s)
Aeromonas hydrophila , Vacunas Bacterianas , Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Vacunas de Subunidad , Aeromonas hydrophila/inmunología , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Cyprinidae/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Inmunidad Humoral
14.
Fish Shellfish Immunol ; 153: 109841, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173984

RESUMEN

Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1ß) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.

15.
Appl Microbiol Biotechnol ; 108(1): 424, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037584

RESUMEN

Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.


Asunto(s)
Anticuerpos Antibacterianos , Vacunas Bacterianas , Leptospirosis , Lipoproteínas , Animales , Leptospirosis/prevención & control , Leptospirosis/inmunología , Lipoproteínas/inmunología , Lipoproteínas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Cricetinae , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Adyuvantes Inmunológicos/administración & dosificación , Inmunoglobulina G/sangre , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Leptospira interrogans/inmunología , Leptospira interrogans/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Vacunación , Inmunidad Humoral , Leptospira/inmunología , Leptospira/genética , Inmunogenicidad Vacunal
16.
J Nanobiotechnology ; 22(1): 44, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291444

RESUMEN

BACKGROUND: The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS: In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS: Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS: These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Formación de Anticuerpos , Vacunas contra la COVID-19 , Pandemias , COVID-19/prevención & control , Inmunización , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
17.
Exp Parasitol ; 259: 108719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364954

RESUMEN

BACKGROUND: Rabbit coccidiosis is a parasitism caused by either one or multiple co-infections of Eimeria species. Among them, Eimeria intestinalis is the primary pathogen responsible for diarrhea, growth retardation, and potential mortality in rabbits. Concerns regarding drug resistance and drug residues have led to the development of recombinant subunit vaccines targeting Eimeria species as a promising preventive measure. The aim of this study was to assess the immunoprotective efficacy of recombinant subunit vaccines comprising EiROP25 and EiROP30 (rhoptry proteins (ROPs)) against E. intestinalis infection in rabbits. METHODS: Cloning, prokaryotic expression, and protein purification were performed to obtain EiROP25 and EiROP30. Five groups of fifty 35-day-old Eimeria-free rabbits were created (unchallenged control group, challenged control group, vector protein control group, rEiROP25 group, and rEiROP30 group), with 10 rabbits in each group. Rabbits in the rEiROP25 and rEiROP30 groups were immunized with the recombinant proteins (100 µg per rabbit) for primary and booster immunization (100 µg per rabbit) at a two-week intervals, and challenged with 7 × 104 oocysts per rabbit after an additional two-week interval. Two weeks after the challenge, the rabbits were euthanized for analysis. Weekly collections of rabbit sera were made to measure changes in specific IgG and cytokine level. Clinical symptoms and pathological changes after challenge were observed and recorded. At the conclusion of the animal experiment, lesion scores, the relative weight increase ratio, the oocyst reduction rate, and the anticoccidial index were computed. RESULTS: Rabbits immunized with rEiROP25 and rEiROP30 exhibited relative weight gain ratios of 56.57% and 72.36%, respectively. Oocysts decreased by 78.14% and 84.06% for the rEiROP25 and rEiROP30 groups, respectively. The anticoccidial indexes were 140 and 155. Furthermore, there was a noticeable drop in intestinal lesions. After the primary immunization with rEiROP25 and rEiROP30, a week later, there was a notable rise in specific IgG levels, which remained elevated for two weeks following challenge (P < 0.05). Interleukin (IL)-2 levels increased markedly in the rEiROP25 group, whereas IL-2, interferon gamma (IFN-γ), and IL-4 levels increased substantially in the rEiROP30 group (P < 0.05). CONCLUSION: Immunization of rabbits indicated that both rEiROP25 and rEiROP30 are capable of inducing an increase in specific antibody levels. rEiROP25 triggered a Th1-type immune protection response, while rEiROP30 elicited a Th1/Th2 mixed response. EiROP25 and EiROP30 can generate a moderate level of immune protection, with better efficacy observed for EiROP30. This study provides valuable insights for the promotion of recombinant subunit vaccines targeting rabbit E. intestinalis infection.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Conejos , Animales , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Proteínas Recombinantes , Vacunas Sintéticas , Oocistos , Vacunas de Subunidad , Inmunoglobulina G , Pollos , Enfermedades de las Aves de Corral/prevención & control
18.
Small ; 19(8): e2205819, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36564365

RESUMEN

Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2 , Proteínas Bacterianas/química , Vacunas Sintéticas , Vacunas Conjugadas , Antígenos , Epítopos
19.
J Virol ; 96(19): e0100622, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106872

RESUMEN

Intranasal vaccination offers the potential advantage of needle-free prevention of respiratory pathogens such as influenza viruses with induction of mucosal immune responses. Optimal design of adjuvants and antigen delivery vehicles for intranasal delivery has not yet been well established. Here, we report that an adjuvant-containing nanoliposome antigen display system that converts soluble influenza hemagglutinin antigens into nanoparticles is effective for intranasal immunization. Intranasal delivery of nanoliposomes in mice delivers the particles to resident immune cells in the respiratory tract, inducing a mucosal response in the respiratory system as evidenced by nasal and lung localized IgA antibody production, while also producing systemic IgG antibodies. Intranasal vaccination with nanoliposome particles decorated with nanogram doses of hemagglutinin protected mice from homologous and heterologous H3N2 and H1N1 influenza virus challenge. IMPORTANCE A self-assembling influenza virus vaccine platform that seamlessly converts soluble antigens into nanoparticles is demonstrated with various H1N1 and H3N2 influenza antigens to protect mice against influenza virus challenge following intranasal vaccination. Mucosal immune responses following liposome delivery to lung antigen-presenting cells are demonstrated.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Inmunidad Mucosa , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Células Presentadoras de Antígenos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Liposomas , Ratones , Nanopartículas , Infecciones por Orthomyxoviridae/prevención & control , Vacunación
20.
J Virol ; 96(17): e0011822, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35972290

RESUMEN

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Epítopos , Glicosilación , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda