Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
Plant J ; 118(1): 171-190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128038

RESUMEN

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Secuencia de Bases , ADN Satélite , Pool de Genes , Fitomejoramiento , Secuencias Repetitivas de Ácidos Nucleicos/genética , Verduras/genética , ADN , Centrómero/genética , Azúcares
2.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602250

RESUMEN

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Asunto(s)
Beta vulgaris , Glucosa , Proteínas de Plantas , Raíces de Plantas , Sacarosa , Animales , Beta vulgaris/citología , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Oocitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Protones , Sacarosa/metabolismo , Xenopus laevis
3.
BMC Bioinformatics ; 25(1): 93, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438871

RESUMEN

An organism's observable traits, or phenotype, result from intricate interactions among genes, proteins, metabolites and the environment. External factors, such as associated microorganisms, along with biotic and abiotic stressors, can significantly impact this complex biological system, influencing processes like growth, development and productivity. A comprehensive analysis of the entire biological system and its interactions is thus crucial to identify key components that support adaptation to stressors and to discover biomarkers applicable in breeding programs or disease diagnostics. Since the genomics era, several other 'omics' disciplines have emerged, and recent advances in high-throughput technologies have facilitated the generation of additional omics datasets. While traditionally analyzed individually, the last decade has seen an increase in multi-omics data integration and analysis strategies aimed at achieving a holistic understanding of interactions across different biological layers. Despite these advances, the analysis of multi-omics data is still challenging due to their scale, complexity, high dimensionality and multimodality. To address these challenges, a number of analytical tools and strategies have been developed, including clustering and differential equations, which require advanced knowledge in bioinformatics and statistics. Therefore, this study recognizes the need for user-friendly tools by introducing Holomics, an accessible and easy-to-use R shiny application with multi-omics functions tailored for scientists with limited bioinformatics knowledge. Holomics provides a well-defined workflow, starting with the upload and pre-filtering of single-omics data, which are then further refined by single-omics analysis focusing on key features. Subsequently, these reduced datasets are subjected to multi-omics analyses to unveil correlations between 2-n datasets. This paper concludes with a real-world case study where microbiomics, transcriptomics and metabolomics data from previous studies that elucidate factors associated with improved sugar beet storability are integrated using Holomics. The results are discussed in the context of the biological background, underscoring the importance of multi-omics insights. This example not only highlights the versatility of Holomics in handling different types of omics data, but also validates its consistency by reproducing findings from preceding single-omics studies.


Asunto(s)
Beta vulgaris , Multiómica , Fitomejoramiento , Biología Computacional , Análisis por Conglomerados
4.
Plant Mol Biol ; 114(3): 67, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836995

RESUMEN

Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.


Asunto(s)
Beta vulgaris , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fotoperiodo , Vernalización
5.
Chembiochem ; : e202400521, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324499

RESUMEN

This review provides a perspective on the industrial application potential of sugar beet pulp (SBP) derived monosaccharides. The broad application of these monosaccharides could contribute to bio-based alternatives and sustainable practices, essential for the transition towards a more circular economy. This review focuses on the utilization and application of two SBP monosaccharides, d-galacturonic acid (d-GalA) and l-arabinose (l-Ara), derived from pectin and hemicellulose. These polysaccharides are major components of sugar beet pulp, an important side stream of sucrose production. d-GalA and l-Ara are therefore abundant in biomass and offer unique molecular structures amenable to selective chemical or enzymatic modifications. We review their application in various industrial applications such as the development and production of bioactive compounds, home and personal care products, and other industries.

6.
Planta ; 259(4): 85, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448714

RESUMEN

MAIN CONCLUSION: This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.


Asunto(s)
Beta vulgaris , Nitrilos , Beta vulgaris/genética , Filogenia , Estrés Salino/genética , Verduras , Histona Acetiltransferasas/genética , Azúcares
7.
Planta ; 260(4): 94, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269658

RESUMEN

MAIN CONCLUSION: Seed-application of the natural products protects sugar beet and wheat plants against infection with plasmodiophorid-transmitted viruses and thus may represent an efficient, environmentally friendly, easy and cost effective biocontrol strategy. In times of intensive agriculture, resource shortening and climate change, alternative, more sustainable and eco-friendly plant protection strategies are required. Here, we tested the potential of the natural plant substances Glycyrrhiza glabra leaf extract (GE) and the rhamnolipid Rhapynal (Rha) applied to seeds to protect against infection of sugar beet and wheat with soil-borne plant viruses. The soil-borne Polymyxa betae- and Polymyxa graminis-transmitted viruses cause extensive crop losses in agriculture and efficient control strategies are missing. We show that GE and Rha both efficiently protect plants against infection with soil-borne viruses in sugar beet and wheat when applied to seeds. Moreover, the antiviral protection effect is independent of the cultivar used. No protection against Polymyxa sp. was observed after seed treatment with the bio-substances at our analysis time points. However, when we applied the bio-substances directly to soil a significant anti-Polymyxa graminis effect was obtained in roots of barley plants grown in the soil as well as in the treated soil. Despite germination can be affected by high concentrations of the substances, a range of antiviral protection conditions with no effect on germination were identified. Seed-treatment with the bio-substances did not negatively affect plant growth and development in virus-containing soil, but was rather beneficial for plant growth. We conclude that seed treatment with GE and Rha may represent an efficient, ecologically friendly, non-toxic, easy to apply and cost efficient biocontrol measure against soil-borne virus infection in plants.


Asunto(s)
Beta vulgaris , Glycyrrhiza , Enfermedades de las Plantas , Extractos Vegetales , Semillas , Semillas/virología , Semillas/efectos de los fármacos , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Beta vulgaris/virología , Beta vulgaris/efectos de los fármacos , Extractos Vegetales/farmacología , Triticum/virología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Glucolípidos/farmacología , Virus de Plantas/fisiología , Virus de Plantas/efectos de los fármacos , Raíces de Plantas/virología , Raíces de Plantas/efectos de los fármacos , Suelo/química , Microbiología del Suelo , Hordeum/virología , Hordeum/efectos de los fármacos , Plasmodiophorida/fisiología , Plasmodiophorida/efectos de los fármacos
8.
Environ Res ; : 120034, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307223

RESUMEN

Adsorption for uranium removal from aqueous systems has been extensively studied, due to its many advantages. However, the great costs and complexity of many sorbent preparation methods are still restricting the progress. Hence, this research aimed to introduce a novel, simple and green method for enhancing Amberlite IR-120 properties for U(VI) removal. Adsorption process parameters were evaluated by batch method and sorbent was characterized before and after uranium adsorption by FTIR, SEM and EDS analysis. The results demonstrated that sorbent was effective for U(VI) removal at pH 5, 100 mg dose with 60 mg/L of U(VI) concentration within 40 min at higher temperatures. The removal efficiency was 87.7% and process was found feasible according to thermodynamic data. Kinetic modelling showed best correlation with pseudo-second order model (r2 = 0.999) and applied isotherms could all describe investigated process suggesting a complex mechanism of U(VI) uptake. Effect of interfering ions (Pb(II), Ni(II) and Co(II)) in a concentration of 45 and 60 mg/L decreased U(VI) removal to 45%. Additionally, AAS method confirmed that used sorbent has significant affinity towards Pb(II). Desorption study revealed successful uranium recovery in up to 3 cycles of sorption/desorption. The EDS analysis revealed the uranium presence with 4.7% and FTIR analysis revealed bands characteristic for stretching vibrations of O=U=O. Proposed mechanism involved U(VI) uptake via non-covalent interactions, inter/intra-molecular hydrogen bonding and intraparticle diffusion. Techno-economic analysis showed that with used preparation method 1 g of ASP costs 0.022 $. Hence, this study offers a novel method for sorbents properties enhancements.

9.
Phytopathology ; 114(2): 334-339, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37698487

RESUMEN

The nematophagous fungus Hyalorbilia oviparasitica and relatives (Hyalorbilia spp.) are known to parasitize several endoparasitic nematodes. In this project, we hypothesized that indigenous populations of this fungus could be used to predict nematode suppression in agricultural field soils. We quantified Hyalorbilia spp. in soil samples from 44 different sugar beet fields in the Imperial Valley of California. Seven soils harboring Hyalorbilia spp. and two that tested negative for the fungi were examined for nematode suppressive activity. Untreated and autoclaved portions of each soil were planted with cabbage and infested with sugar beet cyst nematode (Heterodera schachtii) juveniles. Females and cysts of H. schachtii were enumerated after 12 weeks. In the seven soils harboring Hyalorbilia spp., females and cysts in the untreated soils were reduced by 61 to 82% compared with the autoclaved controls. Soils with no detectable Hyalorbilia spp. exhibited no nematode suppression. Two novel Hyalorbilia strains, HsImV25 and HsImV27, were isolated from H. schachtii females reared in field soil using an enrichment and double-baiting cultivation technique. Both strains suppressed H. schachtii populations by more than 80% in soil-based assays, confirming that Hyalorbilia spp. are the likely causal agents of the nematode suppression in these soils. This study demonstrated that indigenous populations of a hyperparasite (Hyalorbilia spp.) in agricultural field soils predicted suppressive activity against a soilborne plant pathogen (H. schachtii). To our knowledge, this is the first report to demonstrate this capability. We anticipate that this research will provide a blueprint for other similar studies, thereby advancing the field of soilborne biological control.


Asunto(s)
Beta vulgaris , Quistes , Femenino , Humanos , Suelo , Agentes de Control Biológico , Enfermedades de las Plantas/prevención & control , Verduras , Pueblos Indígenas , Azúcares
10.
Ecotoxicol Environ Saf ; 274: 116199, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492485

RESUMEN

This study established a residue detection method based on the QuEChERS pre-treatment method and combined it with high-performance liquid chromatography-tandem mass spectrometry to test six herbicides (metamitron, clopyralid, desmedipham, phenmedipham, ethofumesate, and haloxyfop-p-methyl) in sugar beet plants, soil, and roots. The degradation dynamics and terminal residues of each herbicide in sugar beets were analysed. Finally, the dietary risks of various herbicides in sugar beets were evaluated based on the dietary structure of Chinese people, and the risk quotient values were below 100%. Using this detection method, all reagents exhibited good linearity (0.9724 ≤ R2 ≤ 0.9998), The limit of quantification (LOQ) ranged from 0.01 to 0.05 mg/L, the matrix effect ranged from -1.2% to -50%, the addition recovery rate ranged from 77.00% to 103.48%, and the relative standard deviation ranged from 1.61% to 16.17%; therefore, all indicators of this method met the residue detection standards. Under field conditions, the half-lives (t1/2) ranged about 0.65 ∼ 2.96 d and 0.38 ∼ 27.59 d in sugar beet plants and soil, respectively. All herbicides were easily degraded in sugar beet plants and soil (t1/2 < 30 d). The terminal residue amounts in the beet plants, soil, and roots ranged from < LOQ to 0.243 mg/kg. The dietary risk assessment of each pesticide was conducted based on the residual median of the terminal residues and the highest residual values on the edible part of the beetroot. The chronic exposure risk quotient (RQc) and acute exposure risk quotient (RQa) values were < 100%, indicating that the residue of each pesticide in beetroot posed low risks to consumers in China at the recommended dosage.


Asunto(s)
Beta vulgaris , Compuestos de Flúor , Herbicidas , Residuos de Plaguicidas , Plaguicidas , Piridinas , China , Herbicidas/análisis , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Suelo/química , Azúcares , Verduras
11.
Plant Dis ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412851

RESUMEN

Botryosphaeria dothidea (Moug.:Fr.) Ces. & De Not. is predominantly recognized as a pathogen of various woody plants, inducing symptoms of stem canker, dieback, and fruit rot worldwide. However, sporadic reports suggest its impact on field crops, including B. dothidea associated with stem canker in soybean and tobacco (Bian et al. 2015; Chen et al. 2021), as well as B. quercuum on sugar beet (Alfieri et al. 1984). In September 2023, during a survey of root rot pathogens of sugar beet (Beta vulgaris L.) in Rimski Sancevi, Serbia (N 45°19´57″; E 19°49'58″), 3% of collected samples exhibited root rot symptoms. Externally, the lesions exhibited a dark brown coloration. On cross-section, the tissue displayed a gradient of discoloration ranging from light to dark brown throughout the roots. The roots were completely rotted. From these samples, two fungal isolates (SR28/II and SR4/III) were obtained from rotted internal root fragments, after washing, surface disinfection (70% ethanol), and plating on potato dextrose agar (PDA). Colonies on PDA were fluffy with abundant aerial mycelium, surface light to dark grey-brown, reverse black in the centre and grey-brown towards the irregular margin, after 7 days at 25°C in the dark. To induce sporulation, isolates were cultivated on 2% water agar with pine needles and incubated under continuous near ultraviolet (NUV) light at room temperature for 30 days. Conidia were hyaline, aseptate, fusiform, subtruncate at the base, subobtuse at the apex, and measured (19.56-) 24.12 - 26.31 (-28.99) x (5.13-) 5.94 - 6.54 (-7.44) µm (mean 25.06 x 6.26 µm, n=100), consistent with description of B. dothidea (Phillips et al. 2013). For molecular identification, DNA was extracted from mycelium of 7-day-old cultures, and internal transcribed spacer region (ITS), partial translation elongation factor 1-alpha gene (TEF) and partial ß-tubulin gene (TUB) were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. Multiple sequence alignment and BLAST analyses showed that our isolates had 100% sequence similarity with reference isolates of B. dothidea, including ex-type isolate CBS 115476 (= CMW 8000) in ITS (AY236949), TEF (AY236898), and TUB (AY236927). Maximum likelihood phylogeny of concatenated sequences confirmed the identity of the isolates as B. dothidea. Sequences of ITS, TEF and TUB of isolate SR4/III were submitted to GenBank under accession numbers PP908658, PP911334, PP911333, respectively. The pathogenicity of obtained isolates was assessed on 3-month-old sugar beet plants grown in sterile substrate in the greenhouse. For inoculation, the upper parts of the roots were wounded (10x3 mm) 1 cm above the substrate, using a sterilized nail, and 2x2 mm mycelial plugs of 7-day-old culture grown on PDA were inserted and sealed with parafilm. Control plants were inoculated with sterile PDA plugs. Six plants were used per isolate and for control. After 3 weeks of incubation, the inoculated plants were removed from the substrate and brown rot symptoms were observed upon cross-sectional examination, whereas control roots remained asymptomatic. The pathogen was successfully reisolated and morphologically identified as B. dothidea, fulfilling Koch's postulates. The production of sugar beet, an important industrial crop in Serbia valued for its sugar content, is imperiled by various pathogens. To our knowledge, this is the first report of B. dothidea causing root rot of sugar beet in Serbia and the world. Given its widespread distribution on other hosts and potential aggressiveness, the presence of B. dothidea in sugar beet should not be neglected.

12.
Plant Dis ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295134

RESUMEN

In Michigan, sugarbeets (Beta vulgaris) are stored for up to 200 days post-harvest, during which sugar loss may occur due to energy use from respiration and factors like rot. Cercospora leaf spot (CLS) has been considered a potential predisposing factor for increased storage rot. To investigate these impacts, field and postharvest studies evaluated storage rot symptom development in sugarbeets with designated 'high' or 'low' in-season CLS severity. Root slices of sugarbeets from each CLS level were inoculated with Fusarium graminearum, Botrytis cinerea, or Penicillium vulpinum and symptoms assessed after seven days. Across three CLS-susceptible commercial varieties, there were no significant differences between storage rot susceptibility to any of the tested pathogens in hand-harvested sugarbeets, regardless of CLS level, at any storage timepoint in 2020 or 2021 (P > 0.05). In studies using CLS-susceptible and -resistant germplasm and varieties, CLS effects were inconsistent and only significant in one parameter at two of six storage timepoints across years (P < 0.05). Across storage pathogens, prior CLS level also did not impact root respiration or the change in respiration rate from initial to final storage timepoint in either 2021 or 2023 (P > 0.05). Of note, B. cinerea caused more severe symptoms than other pathogens in these studies (P < 0.05). Finally, varietal responses differed significantly to storage pathogens (P < 0.05) and may be of interest to future cultivar development efforts. This research increases our understanding of factors contributing to potential storage losses, which will improve yield and profit for sugar growers.

13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000240

RESUMEN

GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.


Asunto(s)
Beta vulgaris , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Beta vulgaris/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Redes Reguladoras de Genes , Sintenía
14.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256191

RESUMEN

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Asunto(s)
Beta vulgaris , Metilación de ADN , Sulfitos , Beta vulgaris/genética , Infertilidad Vegetal/genética , Verduras , Azúcares
15.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124931

RESUMEN

The study investigates the efficacy of an enzymatic preparation primarily with α-galactosidase activity for improving the quality of white sugar from poor-quality sugar beets. Focused on overcoming raffinose accumulation challenges in sugar beets, especially those harvested prematurely or stored for extended periods, an innovative exploration of enzymatic application in an industrial setting for the first time was conducted. By integrating theoretical calculations and experimental data, the findings reveal that α-galactosidase preparation notably diminishes raffinose content in beet juice, thus enhancing the sucrose yield and overall sugar quality. A reliable method to process lower-quality beets, promising enhanced efficiency in sugar production, was presented. The study also highlights the economic benefits of incorporating enzyme preparation into the production process, demonstrating a notable return on investment and underscoring the potential of enzymatic treatments to address industry challenges.


Asunto(s)
Beta vulgaris , Rafinosa , alfa-Galactosidasa , Rafinosa/química , Rafinosa/metabolismo , Beta vulgaris/química , alfa-Galactosidasa/metabolismo , alfa-Galactosidasa/química , Azúcares/química , Azúcares/metabolismo , Catálisis
16.
Food Technol Biotechnol ; 62(1): 89-101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601968

RESUMEN

Research background: An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol. Experimental approach: The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast Saccharomyces cerevisiae (30 g/L). The second stage was the pretreatment of ESBC with dilute sulfuric acid to release fermentable sugars. The resulting liquid hydrolysate of ESBC was used in the third stage as a nutrient medium for arabitol production by non-Saccharomyces yeasts (Spathaspora passalidarum CBS 10155 and Spathaspora arborariae CBS 11463). Results and conclusions: The obtained results show that the efficiency of bioethanol production increased with increasing temperature and prolonged residence time in the integrated bioreactor system. The maximum bioethanol production efficiency (87.22 %) was observed at a time of 60 min and a temperature of 36 °C. Further increase in residence time (above 60 min) did not result in the significant increase of bioethanol production efficiency. Weak acid hydrolysis was used for ESBC pretreatment and the highest sugar yield was reached at 200 °C and residence time of 1 min. The inhibitors of the weak acid pretreatment were produced below bioprocess inhibition threshold. The use of the obtained liqiud phase of ESBC hydrolysate for the production of arabitol in the stirred tank bioreactor under constant aeration clearly showed that S. passalidarum CBS 10155 with 8.48 g/L of arabitol (YP/S=0.603 g/g and bioprocess productivity of 0.176 g/(L.h)) is a better arabitol producer than Spathaspora arborariae CBS 10155. Novelty and scientific contribution: An innovative integrated bioprocess system for the production of bioethanol and arabitol was developed based on the biorefinery concept. This three-stage bioprocess system shows great potential for maximum use of SBC as a feedstock for bioethanol and arabitol production and it could be an example of a sustainable 'zero waste' production system.

17.
J Sci Food Agric ; 104(11): 6626-6639, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38523343

RESUMEN

BACKGROUND: Optimizing biochar application is vital for enhancing crop production and ensuring sustainable agricultural production. A 3-year field experiment was established to explore the effects of varying the biochar application rate (BAR) on crop growth, quality, productivity and yields. BAR was set at 0, 10, 50 and 100 t ha-1 in 2018; 0, 10, 25, 50 and 100 t ha-1 in 2019; and 0, 10, 25 and 30 t ha-1 in 2020. Crop quality and growth status and production were evaluated using the dynamic technique for order preference by similarity to ideal solution with the entropy weighted method (DTOPSIS-EW), principal component analysis (PCA), membership function analysis (MFA), gray relation analysis (GRA) and the fuzzy Borda combination evaluation method. RESULTS: Low-dose BAR (≤ 25 t ha-1 for cotton; ≤ 50 t ha-1 for sugar beet) effectively increased biomass, plant height, leaf area index (LAI), water and fertility (N, P and K) productivities, and yield. Biochar application increased the salt absorption and sugar content in sugar beet, with the most notable increases being 116.45% and 20.35%, respectively. Conversely, BAR had no significant effect on cotton fiber quality. The GRA method was the most appropriate for assessing crop growth and quality. The most indicative parameters for reflecting cotton and sugarbeet growth and quality status were biomass and LAI. The 10 t ha-1 BAR consistently produced the highest scores and was the most economically viable option, as evaluated by DTOPSIS-EW. CONCLUSION: The optimal biochar application strategy for improving cotton and sugar beet cultivation in Xinjiang, China, is 10 t ha-1 biochar applied continuously. © 2024 Society of Chemical Industry.


Asunto(s)
Beta vulgaris , Carbón Orgánico , Producción de Cultivos , Fertilizantes , Gossypium , Beta vulgaris/química , Beta vulgaris/crecimiento & desarrollo , Carbón Orgánico/química , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , China , Producción de Cultivos/métodos , Fertilizantes/análisis , Biomasa
18.
J Sci Food Agric ; 104(6): 3235-3245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072666

RESUMEN

BACKGROUND: Sugar beet is one of the most produced industrial plants in the world, and during manufacturing it produces a large quantity of leaf waste. Because this waste is rich in protein, this study aimed to identify an efficient method for producing large-scale protein concentrate from sugar beet leaves. RESULTS: Results showed that protein extraction from fresh leaves was more effective than from dried leaves. Maximum protein extraction was achieved at pH 9, compared with pH 7 or 8. Blanching as a pretreatment reduced protein yield during isoelectric precipitation, with a yield of 2.31% compared to 20.20% without blanching. Consequently, blanching was excluded from the extraction process. After extraction, isoelectric precipitation, heat coagulation, and isoelectric-ammonium sulfate precipitation were compared. Although the latter resulted in the highest protein yield, Fourier transform infrared analysis revealed that excessive salt was not removed during dialysis, making it unsuitable for scale-up due to its additional cost and complexity. Therefore, isoelectric precipitation was selected as the appropriate method for protein precipitation from sugar beet leaves. To increase yield, extractions were assisted by ultrasound or enzyme addition. Ultrasound-assisted extraction resulted in an increased protein yield from 20.20% to 28.60%, while Pectinex Ultra SP-L-assisted extraction was the most effective, increasing protein yield from 20.20% to 38.09%. CONCLUSION: Proteins were extracted from fresh sugar beet leaves using optimum conditions (50 °C, 30 min, pH 9) and precipitated at isoelectric point, with enzymatic-assisted extraction yielding the maximum protein recovery. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Beta vulgaris , Beta vulgaris/metabolismo , Diálisis Renal , Agricultura , Azúcares/metabolismo , Hojas de la Planta/metabolismo
19.
J Sci Food Agric ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072782

RESUMEN

BACKGROUND: The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm). RESULTS: Exposure of the phenolic extracts to 30 UV-A LEDs at 8.64 J m-2 radiation dose decreased the total chlorophyll content by 69.23% and reduced the greenness parameter (-a*) significantly (P < 0.05) from 27.33 ± 0.32 to 8.64 ± 0.16. Additionally, UV-A treatment increased the content of most individual phenolic compounds (e.g. gallic acid, ferulic acid, etc.) significantly, resulting in an increase in the overall phenolic content in the extracts from 900.56 ± 14.11 µg g-1 fresh weight (FW) to a maximum of 975.09 ± 9.62 µg g-1 FW at 0.67 J m-2. However, rutin content had a significant decrease at the highest radiation dose (8.64 J m-2). The soluble sugar content (i.e. glucose and fructose) increased simultaneously with phenolic compounds after the UV-A treatment. Although the UV treatment reduced the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, it had no significant effect on the ferrous chelating activity and the extract's ability to delay lipid oxidation in corn oil. The antioxidant activity index of the treated extract was comparable to that of butylated hydroxytoluene, a synthetic antioxidant. CONCLUSION: Key findings of this study include successful decolourization of the extract, decomposition of bound polyphenols to their free form, and maintaining the antioxidant activity of the extract in the oil system after UV-A exposure. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

20.
Trop Anim Health Prod ; 56(5): 173, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780716

RESUMEN

This study investigated the effect of co-ensiled rice straw (RS) with whole sugar beet (SB) on lactating cows' performance. Ensiled rice straw (ERS) as control (CGS) was incorporated with immersed corn grains (CG) for 24 h, while the 2nd and 3rd ensiled RS (LSB and HSB) contained SB substituted of 50 and 100% of CG on an energy basis (total digestible nutrients, TDN), respectively. In the experimental diets, D1, D2, and D3, which include CGS, LSB, and HSB provided ad-libitum, respectively, while a concentrated feed mixture (2% of body weight) was offered. The population of lactic acid bacteria was slightly higher with fed HSB, relative to LSB and CGS. The OM, CP, EE, NFC, and TCH contents of CGS were slightly higher than LSB and HSB, while the opposite happened with the aNDFom, and ADFom contents. The digestibility of DM, OM, aNDFom, and ADFom of the D3 group was higher (P < 0.05) than in D1 and D2. The D3 recorded the highest values (P < 0.05) of silage consumption, and palatability. Milk production, fat-corrected milk (FCM), and energy-corrected milk (ECM) were (P < 0.05) higher for cows fed D3 compared with D1 and D2. Fat, protein, lactose, and total solids were trending on the same track. The feed conversion ratio (FCR) of cows fed diet D3 was better than cows fed D1 diet. The level of glucose in the blood increased (P < 0.05) significantly with feeding on HSB than LSB, which was significantly (P < 0.05) higher compared to CGS. In conclusion, co-ensiling of RS with the whole SB plant consider a good method to improve its nutritional value.


Asunto(s)
Beta vulgaris , Dieta , Lactancia , Oryza , Ensilaje , Animales , Bovinos/fisiología , Femenino , Beta vulgaris/química , Lactancia/fisiología , Oryza/química , Ensilaje/análisis , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Leche/química , Leche/metabolismo , Digestión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda