Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proteins ; 91(4): 456-465, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36301308

RESUMEN

The crystal structures of an L-type lectin domain from Methanocaldococcus jannaschii in apo and mannose-bound forms have been determined. A thorough investigation of L-type lectin domains from several organisms provides insight into the differences in these domains from different kingdoms of life. While the overall fold of the L-type lectin domain is conserved, differences in the lengths of the carbohydrate-binding loops and significant variations in the Mn2+ -binding site compared to the Ca2+ -binding site are observed. Furthermore, the sequence and phylogenetic analyses suggest that the archaeal L-type lectin domain is evolutionarily closer to the plant legume lectins than to its bacterial or animal counterparts. This is the first report of the biochemical, structural, sequence, and phylogenetic analyses of an L-type lectin domain from archaea and serves to enhance our understanding of the species-specific differences and evolution of L-type lectin domains.


Asunto(s)
Archaea , Lectinas , Animales , Lectinas/química , Archaea/genética , Archaea/metabolismo , Filogenia , Lectinas de Plantas , Sitios de Unión , Cristalografía por Rayos X
2.
Biochem Biophys Res Commun ; 682: 187-192, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37820454

RESUMEN

d-Allose is an aldohexose of the C3-epimer of d-glucose, existing in very small amounts in nature, called a rare sugar. The operon responsible for d-allose metabolism, the allose operon, was found in several bacteria, which consists of seven genes: alsR, alsB, alsA, alsC, alsE, alsK, and rpiB. To understand the biological implication of the allose operon utilizing a rare sugar of d-allose as a carbon source, it is important to clarify whether the allose operon functions specifically for d-allose or also functions for other ligands. It was proposed that the allose operon can function for d-ribose, which is essential as a component of nucleotides and abundant in nature. Allose-binding protein, AlsB, coded in the allose operon, is thought to capture a ligand outside the cell, and is expected to show high affinity for the specific ligand. X-ray structure determinations of Enterobacter cloacae AlsB (EtcAlsB) in ligand-free form, and in complexes with d-allose, d-ribose, and d-allulose, and measurements of the thermal parameters of the complex formation using an isothermal titration calorimeter were performed. The results demonstrated that EtcAlsB has a unique recognition mechanism for high affinity to d-allose by changing its conformation from an open to a closed form depending on d-allose-binding, and that the binding of d-ribose to EtcAlsB could not induce a completely closed form but an intermediate form, explaining the low affinity for d-ribose.


Asunto(s)
Proteínas Portadoras , Monosacáridos , Proteínas Portadoras/metabolismo , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Rayos X , Ligandos , Ribosa/metabolismo , Glucosa/metabolismo
3.
Mol Biol Rep ; 49(8): 7665-7676, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35717475

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the main types of primary liver cancer, which shows some abnormal glycosylation, such as the increase of fucose. Lens culinaris agglutinin (LCA), a natural plant lectin that can bind to mannose and fucose, has been reported to be antiproliferative to may tumors. However, the effect of LCA on the vitality and migration ability of human hepatoma cells is not demonstrated. Therefore, the aim of this study is to investigate the effects of LCA on vitality and migration in human hepatoma cells and its potential mechanisms. METHODS AND RESULTS: LCA had no significant effect on viability of human hepatoma cells (HCCLM3, MHCC97L and HepG2) and hepatocytes (L02) by CCK-8 kit, but it could inhibit human hepatoma cells migration significantly without affecting hepatocytes by Transwell method. Sugar inhibition assay was used to verify the possible binding site between LCA and human hepatoma cells. The result showed that Mannose- and fucose- related sites were associated with LCA inhibiting human hepatoma cells migration. Moreover, LCA could affect HCCLM3 migration by activating ERK1/2 and JNK1/2/3 signalling pathways. LCA did not affect MMP-2 and MMP-9 of HCCLM3 through gelatinase zymography. However, the results of immunofluorescence standing showed that LCA could reduce the F-actin formation in HCCLM3 via ERK1/2 and JNK1/2/3 signalling pathways. CONCLUSIONS: LCA might inhibit human hepatoma cell migration by reducing the F-actin formation via the mannose and fucose-mediated ERK1/2 and JNK1/2/3 signalling pathway. This result will deepen people's understanding on plant lectin as a drug in tumor glycobiology.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Actinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Quinasas MAP Reguladas por Señal Extracelular , Fucosa/metabolismo , Fucosa/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Manosa , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacología
4.
J Biol Chem ; 295(28): 9474-9489, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32409580

RESUMEN

Microbial α-glucans produced by GH70 (glycoside hydrolase family 70) glucansucrases are gaining importance because of the mild conditions for their synthesis from sucrose, their biodegradability, and their current and anticipated applications that largely depend on their molar mass. Focusing on the alternansucrase (ASR) from Leuconostoc citreum NRRL B-1355, a well-known glucansucrase catalyzing the synthesis of both high- and low-molar-mass alternans, we searched for structural traits in ASR that could be involved in the control of alternan elongation. The resolution of five crystal structures of a truncated ASR version (ASRΔ2) in complex with different gluco-oligosaccharides pinpointed key residues in binding sites located in the A and V domains of ASR. Biochemical characterization of three single mutants and three double mutants targeting the sugar-binding pockets identified in domain V revealed an involvement of this domain in alternan binding and elongation. More strikingly, we found an oligosaccharide-binding site at the surface of domain A, distant from the catalytic site and not previously identified in other glucansucrases. We named this site surface-binding site (SBS) A1. Among the residues lining the SBS-A1 site, two (Gln700 and Tyr717) promoted alternan elongation. Their substitution to alanine decreased high-molar-mass alternan yield by a third, without significantly impacting enzyme stability or specificity. We propose that the SBS-A1 site is unique to alternansucrase and appears to be designed to bind alternating structures, acting as a mediator between the catalytic site and the sugar-binding pockets of domain V and contributing to a processive elongation of alternan chains.


Asunto(s)
Proteínas Bacterianas/química , Glucanos/química , Glicosiltransferasas/química , Leuconostoc/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Glucanos/biosíntesis , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Dominios Proteicos
5.
Fish Shellfish Immunol ; 115: 160-170, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34147614

RESUMEN

C-type lectins (CTL) are a large group of pattern-recognition proteins and to play important roles in glycoprotein metabolism, multicellular integration, and immunity. Based on their overall domain structure, they can be classified as different groups that possess different physiological functions. A typical C-type lectin (named as OmLec1) was identified from the fish, Onychostoma macrolepis, an important cultured fish in China. Open reading frame of OmLec1 contains a 570 bp, encoding a protein of 189 amino acids that includes a signal peptide and a single carbohydrate-recognition domain. The phylogenetic analysis showed that OmLec1 could be grouped with C-type lectin from other fish. OmLec1 was expressed in all the tissues in our study, and the expression level was highest in liver. And its relative expression levels were significantly upregulated following infection with Aeromonas hydrophila. The recombinant OmLec1 protein (rOmLec1) could agglutinate some Gram-negative bacteria and Gram-positive bacteria in vitro in the presence of Ca2+, showing a typical Ca2+-dependent carbohydrate-binding protein. Furthermore, rOmLec1 purified from E. coli BL21 (DE3), strongly bound to LPS and PGN, as well as all tested bacteria in a Ca2+-dependent manner. These results indicate that OmLec1 plays a central role in the innate immune response and as a pattern recognition receptor that recognizes diverse pathogens among O. macrolepis.


Asunto(s)
Cyprinidae/genética , Cyprinidae/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Lectinas Tipo C/química , Filogenia , Alineación de Secuencia/veterinaria
6.
Molecules ; 25(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443732

RESUMEN

The mushroom Agaricus bisporus secretes biologically active compounds and proteins with benefits for human health. Most reported proteins from A. bisporus are tyrosinases and lectins. Lectins are of therapeutic or pharmaceutical interest. To date, only limited information is available on A. bisporus lectins and lectin-like proteins. No therapeutic products derived from A. bisporus lectin (ABL) are available on the market despite its extensive exploration. Recently, A. bisporus mannose-binding protein (Abmb) was discovered. Its discovery enriches the information and increases the interest in proteins with therapeutic potential from this mushroom. Furthermore, the A. bisporus genome reveals the possible occurrence of other lectins in this mushroom that may also have therapeutic potential. Most of these putative lectins belong to the same lectin groups as ABL and Abmb. Their relationship is discussed. Particular attention is addressed to ABL and Abmb, which have been explored for their potential in medicinal or pharmaceutical applications. ABL and Abmb have anti-proliferative activities toward cancer cells and a stimulatory effect on the immune system. Possible scenarios for their use in therapy and modification are also presented.


Asunto(s)
Agaricus/química , Lectinas/genética , Lectina de Unión a Manosa/genética , Monofenol Monooxigenasa/genética , Agaricus/genética , Genoma Fúngico/genética , Humanos , Lectinas/uso terapéutico , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/uso terapéutico , Monofenol Monooxigenasa/química
7.
J Bacteriol ; 201(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31138628

RESUMEN

Bacillus subtilis is a heterotrophic soil bacterium that hydrolyzes different polysaccharides mainly found in the decomposed plants. These carbohydrates are mainly cellulose, hemicellulose, and the raffinose family of oligosaccharides (RFOs). RFOs are soluble α-galactosides, such as raffinose, stachyose, and verbascose, that rank second only after sucrose in abundance. Genome sequencing and transcriptome analysis of B. subtilis indicated the presence of a putative α-galactosidase-encoding gene (melA) located in the msmRE-amyDC-melA operon. Characterization of the MelA protein showed that it is a strictly Mn2+- and NAD+-dependent α-galactosidase able to hydrolyze melibiose, raffinose, and stachyose. Transcription of the msmER-amyDC-melA operon is under control of a σA-type promoter located upstream of msmR (P msmR ), which is negatively regulated by MsmR. The activity of P msmR was induced in the presence of melibiose and raffinose. MsmR is a transcriptional repressor that binds to two binding sites at P msmR located upstream of the -35 box and downstream of the transcriptional start site. MsmEX-AmyCD forms an ATP-binding cassette (ABC) transporter that probably transports melibiose into the cell. Since msmRE-amyDC-melA is a melibiose utilization system, we renamed the operon melREDCAIMPORTANCEBacillus subtilis utilizes different polysaccharides produced by plants. These carbohydrates are primarily degraded by extracellular hydrolases, and the resulting oligo-, di-, and monosaccharides are transported into the cytosol via phosphoenolpyruvate-dependent phosphotransferase systems (PTS), major facilitator superfamily, and ATP-binding cassette (ABC) transporters. In this study, a new carbohydrate utilization system of B. subtilis responsible for the utilization of α-galactosides of the raffinose family of oligosaccharides (RFOs) was investigated. RFOs are synthesized from sucrose in plants and are mainly found in the storage organs of plant leaves. Our results revealed the modus operandi of a new carbohydrate utilization system in B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Oligosacáridos/metabolismo , Operón , Rafinosa/metabolismo , Bacillus subtilis/metabolismo , Galactósidos/metabolismo , Melibiosa/metabolismo , Sacarosa/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
8.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29678880

RESUMEN

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Listeria/metabolismo , Polisacáridos Bacterianos/metabolismo , beta-Glucanos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Listeria/química , Simulación de Dinámica Molecular , Polisacáridos Bacterianos/química , Unión Proteica , Conformación Proteica , Termodinámica , beta-Glucanos/química
9.
J Biol Chem ; 291(15): 7844-57, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26861882

RESUMEN

Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 µmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Pseudomonas putida/química , Pseudomonas putida/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Galactosa/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Pliegue de Proteína , Infecciones por Pseudomonas/microbiología , Alineación de Secuencia , Especificidad por Sustrato
10.
Int J Mol Sci ; 18(6)2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28556796

RESUMEN

Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Quitina/metabolismo , Lectinas/metabolismo , Lectinas de Plantas/metabolismo , Azúcares/metabolismo , Cromatografía de Afinidad
11.
Fish Shellfish Immunol ; 55: 140-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27235369

RESUMEN

Recognizing the presence of invading pathogens by pattern recognition receptors (PRRs) is key to mounting an effective innate immune response. Mammalian CD302 is an unconventional C-type lectin like receptor (CTLR) involved in the functional regulation of immune cells. However, the role of CD302 in fish remains unclear. In this study, we characterized a novel CD302 gene from ayu (Plecoglossus altivelis), which was tentatively named PaCD302. The cDNA sequence of PaCD302 is 1893 nucleotides in length, and encodes a polypeptide of 241 amino acids with molecular weight 27.1 kDa and pI 4.69. Sequence comparison and phylogenetic tree analysis showed that PaCD302 is a type I transmembrane CTLR devoid of the known amino acid residues essential for Ca(2+)-dependent sugar binding. PaCD302 mRNA expression was detected in all tissues and cells tested, with the highest level in the liver. Following Vibrio anguillarum infection, PaCD302 mRNA expression was significantly upregulated in all tissues tested. For further functional analysis, we generated a recombinant protein for PaCD302 (rPaCD302) by prokaryotic expression and raised a specific antibody against rPaCD302. Western blot analysis revealed that the native PaCD302 is glycosylated. Refolded rPaCD302 was unable to bind to five monosaccharides (l-fucose, d-galactose, d-glucose, d-mannose and N-acetyl glucosamine) or two other polysaccharides (lipopolysaccharide and peptidoglycan). It was able to bind to three Gram-positive and seven Gram-negative bacteria, but show no bacterial agglutinating activity. PaCD302 function blocking using anti-PaCD302 IgG resulted in inhibition of phagocytosis and bactericidal activity of ayu monocytes/macrophages (MO/MΦ), suggesting that PaCD302 regulates the function of ayu MO/MΦ. In summary, our study demonstrates that PaCD302 may participate in the immune response of ayu against bacterial infection via modulation of MO/MΦ function.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica , Inmunidad Innata , Lectinas Tipo C/genética , Osmeriformes , Vibriosis/veterinaria , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Monocitos/inmunología , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Alineación de Secuencia/veterinaria , Vibrio/fisiología , Vibriosis/genética , Vibriosis/inmunología , Vibriosis/microbiología
12.
Molecules ; 21(5)2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27187324

RESUMEN

The convergent synthesis of the Lewis A (Le(a)) tandem repeat is described. The Le(a) tandem repeat is a carbohydrate ligand for a mannose binding protein that shows potent inhibitory activity against carcinoma growth. The Le(a) unit, {ß-d-Gal-(1→3)-[α-l-Fuc-(1→4)]-ß-d-GlcNAc}, was synthesized by stereoselective nitrile-assisted ß-galactosylation with the phenyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-ß-galactoside, and ether-assisted α-fucosylation with fucosyl (N-phenyl)trifluoroacetimidate. This common Le(a) unit was easily converted to an acceptor and donor in high yields, and the stereoselective assembly of the hexasaccharide and dodecasaccharide as the Le(a) tandem repeat framework was achieved by 2-trichloroacetamido-assisted ß-glycosylation and the (N-phenyl)trifluoroacetimidate method.


Asunto(s)
Oligosacáridos/síntesis química , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13 , Galactosa/química , Antígenos del Grupo Sanguíneo de Lewis , Oligosacáridos/química , Oligosacáridos/farmacología , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Secuencias Repetidas en Tándem
13.
J Biol Chem ; 289(47): 33012-9, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25296751

RESUMEN

The phosphotransfer protein IIA(Glc) of the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system plays a key role in the regulation of carbohydrate metabolism. Melibiose permease (MelB) is one among several permeases subject to IIA(Glc) regulation. The regulatory mechanisms are poorly understood; in addition, thermodynamic features of IIA(Glc) binding to other proteins are also unknown. Applying isothermal titration calorimetry and amine-specific cross-linking, we show that IIA(Glc) directly binds to MelB of Salmonella typhimurium (MelB(St)) and Escherichia coli MelB (MelB(Ec)) at a stoichiometry of unity in the absence or presence of melibiose. The dissociation constant values are 3-10 µM for MelB(St) and 25 µM for MelB(Ec). All of the binding is solely driven by favorable enthalpy forces. IIA(Glc) binding to MelB(St) in the absence or presence of melibiose yields a large negative heat capacity change; in addition, the conformational entropy is constrained upon the binding. We further found that the IIA(Glc)-bound MelB(St) exhibits a decreased binding affinity for melibiose or nitrophenyl-α-galactoside. It is believed that sugar binding to the permease is involved in an induced fit mechanism, and the transport process requires conformational cycling between different states. Thus, the thermodynamic data are consistent with the interpretation that IIA(Glc) inhibits the induced fit process and restricts the conformational dynamics of MelB(St).


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Simportadores/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Calorimetría/métodos , Electroforesis en Gel de Poliacrilamida , Entropía , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucosa/metabolismo , Cinética , Melibiosa/metabolismo , Modelos Moleculares , Mutación , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Unión Proteica , Estructura Terciaria de Proteína , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Especificidad de la Especie , Simportadores/química , Simportadores/genética
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 324-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664742

RESUMEN

Jacalin is among the most thoroughly studied lectins. Its carbohydrate-binding site has also been well characterized. It has been postulated that the lower affinity of ß-galactosides for jacalin compared with α-galactosides is caused by steric interactions of the substituents in the former with the protein. This issue has been explored energetically and structurally using different appropriate carbohydrate complexes of jacalin. It turns out that the earlier postulation is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in ß-galactosides. The difference in energy, and therefore in affinity, is caused by a distortion of the sugar ring in ß-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands for jacalin.


Asunto(s)
Artocarpus/química , Galactósidos/metabolismo , Lectinas de Plantas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Galactósidos/química , Modelos Moleculares , Lectinas de Plantas/química , Conformación Proteica
15.
Anim Biotechnol ; 26(1): 29-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25153452

RESUMEN

Conglutinin, a soluble pattern recognition receptor of innate immune system in bovines is known for its potential defensive activity against microorganisms either by direct agglutination in the presence of calcium or by acting as opsonin. In the present study, sheep (Ovis aries) conglutinin encoding neck and carbohydrate recognition domain (rSCGN) was expressed in the E coli BL21 expression host. The recombinant conglutinin revealed molecular weight of 27 kDa in SDS PAGE and also in western blotting using antibuffalo conglutinin polyclonal serum. The protein was characterized further for its functional activity in various assays. In ELISA based sugar and LPS binding assay, the rSCGN revealed its high binding activity toward N-acetyl glucosamine and E. coli LPS in the presence and the absence of calcium ions, respectively. Hemagglutination of chicken red blood cells caused by Newcastle disease virus was not inhibited in the presence of rSCGN as it lacked complete collagenous region present in the native protein. In virus neutralization test, the recombinant protein was found to reduce multiplication of bovine herpes virus-1 propagated in MDBK cells. This prokaryotically expressed 27 kDa recombinant sheep conglutinin can serve as antigen in future studies to develop sandwich ELISA for assessing the level of native conglutinin in sheep serum.


Asunto(s)
Colectinas/química , Colectinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Seroglobulinas/química , Seroglobulinas/metabolismo , Acetilglucosamina/metabolismo , Animales , Pollos , Colectinas/genética , Colectinas/inmunología , Eritrocitos/virología , Escherichia coli , Lipopolisacáridos/metabolismo , Virus de la Enfermedad de Newcastle , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Seroglobulinas/genética , Seroglobulinas/inmunología , Oveja Doméstica
16.
J Comput Chem ; 35(30): 2177-83, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25220682

RESUMEN

Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.


Asunto(s)
Receptores de Superficie Celular/química , Sitios de Unión , Modelos Moleculares , Conformación Proteica
17.
Talanta ; 253: 123882, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36088845

RESUMEN

A CdS/AuNPs/NiO Z-scheme heterojunction was prepared on a fluorine-doped tin oxide (FTO) electrode by hydrothermal synthesis of NiO on FTO, electrodeposition of AuNPs on NiO/FTO electrode and then cast-coating of CdS quantum dots. The CdS/AuNPs/NiO/FTO electrode gave a notably increased photocurrent versus NiO/FTO, CdS/FTO, AuNPs/NiO/FTO, CdS/AuNPs/FTO and CdS/NiO/FTO electrodes. The CdS/AuNPs/NiO/FTO electrode was further cast-coated with chitosan to immobilize d-mannose by Schiff base reaction, and concanavalin A (ConA) and then horseradish peroxidase (HRP) were captured on the electrode surface by lectin-sugar binding. 4-Chloro-1-naphthol (4-CN) was oxidized to form an insoluble precipitate catalyzed by HRP in the presence of H2O2, and the presence of precipitate on the photoelectrode inhibited the photocurrent in the presence of holes scavenger ascorbic acid. The relevant electrodes were characterized by electrochemistry, quartz crystal microbalance (QCM), UV-vis spectrophotometry, scanning electron microscopy/energy dispersive spectroscopy, and transmission electron microscopy. The QCM revealed that the collection efficiency (η) of the 4-CN-electrooxidation precipitate on the electrode can be as high as 91.8%. Under the optimal conditions, the decline of photocurrent responded linearly to the common logarithm of ConA concentration from 50 pM to 500 nM, with a limit of detection of 17 pM (S/N = 3). Satisfactory results were obtained in the detection of real soybean samples.


Asunto(s)
Lectinas , Nanopartículas del Metal , Concanavalina A , Oro , Peróxido de Hidrógeno , Azúcares
18.
Protein Pept Lett ; 30(11): 941-950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946357

RESUMEN

BACKGROUND: UDP-glucuronosyltransferases (UGTs) play a crucial role in maintaining endobiotic homeostasis and metabolizing xenobiotic compounds, particularly clinical drugs. However, the detailed catalytic mechanism of UGTs has not been fully elucidated due to the limited availability of reliable protein structures. Determining the catalytic domain of human UGTs has proven to be a significant challenge, primarily due to the difficulty in purifying and crystallizing the full-length protein. OBJECTIVES: This study focused on the human UGT2B10 C-terminal cofactor binding domain, aiming to provide structural insights into the fundamental catalytic mechanisms. METHODS: In this study, the C-terminal sugar-donor binding domain of human UGT2B10 was purified and crystallized using the vapor-diffusion method. The resulting UGT2B10 CTD crystals displayed high-quality diffraction patterns, allowing for data collection at an impressive resolution of 1.53 Å using synchrotron radiation. Subsequently, the structure of the UGT2B10 CTD was determined using the molecule replacement method with a homologous structure. RESULTS: The crystals were monoclinic, belonging to the space C2 with unit-cell parameters a = 85.90 Å, b = 58.39 Å, c = 68.87 Å, α = γ = 90°, and ß = 98.138°. The Matthews coefficient VM was determined to be 2.24 Å3 Da-1 (solvent content 46.43%) with two molecules in the asymmetric unit. CONCLUSION: The crystal structure of UGT2B10 CTD was solved at a high resolution of 1.53 Å, revealing a conserved cofactor binding pocket. This is the first study determining the C-terminal cofactor binding domain of human UGT2B10, which plays a key role in additive drug metabolism.


Asunto(s)
Nucleótidos , Azúcares , Humanos , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Dominio Catalítico , Uridina Difosfato
19.
Int J Mol Sci ; 13(8): 10387-10400, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22949868

RESUMEN

Mucin 16 (MUC16) is a type I transmembrane protein, the extracellular portion of which is shed after proteolytic degradation and is denoted as CA125 antigen, a well known tumor marker for ovarian cancer. Regarding its polypeptide and glycan structures, as yet there is no detailed insight into their heterogeneity and ligand properties, which may greatly influence its function and biomarker potential. This study was aimed at obtaining further insight into the biological capacity of MUC16/CA125, using in silico analysis of corresponding mucin sequences, including similarity searches as well as GO (gene ontology)-based function prediction. The results obtained pointed to the similarities within extracellular serine/threonine rich regions of MUC16 to sequences of proteins expressed in evolutionary distant taxa, all having in common an annotated role in adhesion-related processes. Specifically, a homology to conserved domains from the family of herpesvirus major outer envelope protein (BLLF1) was found. In addition, the possible involvement of MUC16/CA125 in carbohydrate-binding interactions or cellular transport of protein/ion was suggested.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Antígeno Ca-125/metabolismo , Adhesión Celular/fisiología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Simulación por Computador , Femenino , Humanos
20.
Comput Biol Chem ; 99: 107716, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810558

RESUMEN

Glycosaminoglycans are linear periodic and anionic polysaccharides found in the extracellular matrix, involved in a range of key biochemical processes as a result of their interactions with a variety of protein partners. Due to the template-less synthesis, high flexibility and charge of GAGs, as well as the multipose binding of GAG ligands to receptors, the specificity of GAG-protein interactions can be difficult to elucidate. In this study we propose a set of MD-based descriptors of unbound Heparan Sulfate hexasaccharides that can be used to characterize GAGs and explain their binding affinity to a set of protein receptors. With the help of experimental data on GAG-protein binding affinity, we were able to further characterize the nature of this interaction in addition to providing a basis for predictor functions of GAG-protein binding specificity.


Asunto(s)
Simulación de Dinámica Molecular , Sulfatos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Unión Proteica , Sulfatos/química , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda