Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078650

RESUMEN

Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.


Asunto(s)
Células Ciliadas Vestibulares , Pérdida Auditiva , Ratones , Animales , Células Ciliadas Auditivas Internas , Cóclea/fisiología , Pérdida Auditiva/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
2.
Dev Biol ; 512: 70-88, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729405

RESUMEN

In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.


Asunto(s)
Movimiento Celular , Sistema de la Línea Lateral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/citología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Vía de Señalización Wnt , Factores de Crecimiento de Fibroblastos/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Células Madre/citología , Transducción de Señal , Reprogramación Celular
3.
EMBO Rep ; 24(9): e56562, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37492931

RESUMEN

Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Animales , Humanos , Ratones , Diferenciación Celular/genética , Cóclea/metabolismo , Perfilación de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Madre/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Glia ; 72(4): 665-676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37933494

RESUMEN

The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.


Asunto(s)
Cóclea , Virosis , Humanos , Cóclea/fisiología , Células Ciliadas Auditivas/metabolismo , Transducción de Señal/fisiología , Virosis/metabolismo , Inmunidad
5.
Cell Commun Signal ; 22(1): 330, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879537

RESUMEN

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/ß-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/ß-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/ß-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/ß-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/ß-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/ß-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.


Asunto(s)
Testículo , Vía de Señalización Wnt , Humanos , Masculino , Testículo/metabolismo , Testículo/embriología , Femenino , Diferenciación Sexual/genética , Feto/metabolismo , Diferenciación Celular , Proliferación Celular , beta Catenina/metabolismo , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/citología , Ovario/metabolismo , Ovario/embriología
6.
Dev Dyn ; 251(7): 1156-1174, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35038200

RESUMEN

BACKGROUND: Atoh1 is recognized to be essential for cochlear hair cell (HC) development. However, Atoh1 temporal and spatial expression patterns remain widely debated. Here, we aimed to obtain evidence to resolve the controversies regarding Atoh1 expression by generating a new knockin mouse strain: Atoh13*HA-P2A-Cre . RESULTS: Fate-mapping analysis of Atoh13*HA-P2A-Cre/+ ; Rosa26-CAG-LSL-tdTomato (Ai9)/+ mice enabled us to concurrently characterize the temporal expression of Atoh1 protein (through HA-tag immunostaining) and visualize the cells expressing Atoh1 mRNA (as tdTomato+ cells). Our findings show that whereas Atoh1 mRNA expression is rapidly turned on in early cochlear progenitors, Atoh1 protein is only detected in differentiating HCs or progenitors just committed to the HC fate. Cre activity is also stronger in Atoh13*HA-P2A-Cre/+ than in previous mouse models, because almost all cochlear HCs and nearby supporting cells here are tdTomato+. Furthermore, tdTomato, but not HA, is expressed in middle and apical spiral ganglion neurons. CONCLUSION: Collectively, our findings indicate that Atoh13*HA-P2A-Cre can serve as a powerful genetic model in the developmental biology field.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cóclea , Células Ciliadas Auditivas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/metabolismo , Técnicas de Sustitución del Gen , Células Ciliadas Auditivas/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
J Neurosci ; 41(26): 5620-5637, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34016714

RESUMEN

The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.


Asunto(s)
Quitinasas/metabolismo , Inflamación/metabolismo , Mucosa Olfatoria/fisiología , Regeneración/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
8.
Development ; 146(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770379

RESUMEN

Supporting cells (SCs) are known to spontaneously regenerate hair cells (HCs) in the neonatal mouse cochlea, yet little is known about the relative contribution of distinct SC subtypes which differ in morphology and function. We have previously shown that HC regeneration is linked to Notch signaling, and some SC subtypes, but not others, lose expression of the Notch effector Hes5 Other work has demonstrated that Lgr5-positive SCs have an increased capacity to regenerate HCs; however, several SC subtypes express Lgr5. To further investigate the source for spontaneous HC regeneration, we used three CreER lines to fate-map distinct groups of SCs during regeneration. Fate-mapping either alone or combined with a mitotic tracer showed that pillar and Deiters' cells contributed more regenerated HCs overall. However, when normalized to the total fate-mapped population, pillar, Deiters', inner phalangeal and border cells had equal capacity to regenerate HCs, and all SC subtypes could divide after HC damage. Investigating the mechanisms that allow individual SC subtypes to regenerate HCs and the postnatal changes that occur in each group during maturation could lead to therapies for hearing loss.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/fisiología , Células Laberínticas de Soporte/fisiología , Regeneración , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Cruzamientos Genéticos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Pérdida Auditiva , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Mitosis , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal
9.
Dev Dyn ; 249(2): 173-186, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31487081

RESUMEN

BACKGROUND: Conditional loss-of-function studies are widely conducted using the Cre/Loxp system because this helps circumvent embryonic or neonatal lethality problems. However, Cre strains specific to the inner ear are lacking, and thus lethality frequently occurs even in conditional knockout studies. RESULTS: Here, we report a Rorb-IRES-Cre knockin mouse strain in which the Cre recapitulates the expression pattern of endogenous Rorb (RAR-related orphan receptor beta). Analysis of Rorb-IRES-Cre/+; Rosa26-CAG-LSL-tdTomato/+ cochlear samples revealed that tdTomato was expressed at the apical turn only by E12.5. TdTomato was observed in the apical and middle turns but was minimally expressed in the basal turn at E15.5, E18.5, and P5. However, most of the auditory hair cells (HCs) and supporting cells (SCs) in all three turns were tdTomato+ at P15 and P30. Intriguingly, no tdTomato+ vestibular cells were detected until P5 and a few cells were present at P15 and P30. Finally, we also confirmed Rorb mRNA and protein expression in cochlear HCs and SCs at P30. CONCLUSIONS: We reveal that Rorb expression exhibits an apical-to-basal gradient in cochleae. The cochlear-specific and apical-to-basal-gradient Rorb Cre activity should enable discrimination of gene functions in cochlear vs vestibular regions as well as low-frequency vs high-frequency regions in the cochlea.


Asunto(s)
Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Cóclea/citología , Oído Interno/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Neurophysiol ; 124(3): 962-972, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32816581

RESUMEN

Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.


Asunto(s)
Potenciales de Acción/fisiología , Agonistas de Receptores GABA-B/farmacología , Antagonistas de Receptores de GABA-B/farmacología , Células Ciliadas Vestibulares/fisiología , Canales de Potasio Calcio-Activados/metabolismo , Terminales Presinápticos/fisiología , Receptores de GABA-B/metabolismo , Canales Semicirculares/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Baclofeno/farmacología , Cloruro de Cadmio/farmacología , Femenino , Células Ciliadas Vestibulares/efectos de los fármacos , Masculino , Compuestos Organofosforados/farmacología , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/efectos de los fármacos , Canales Semicirculares/efectos de los fármacos
11.
Semin Cell Dev Biol ; 65: 96-105, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27864084

RESUMEN

Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.


Asunto(s)
Linaje de la Célula/genética , Sensación de Gravedad/fisiología , Células Ciliadas Vestibulares/citología , Equilibrio Postural/fisiología , Regeneración/genética , Animales , Diferenciación Celular , Proliferación Celular , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/clasificación , Células Ciliadas Vestibulares/metabolismo , Ratones , Organogénesis/genética , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(14): E1393-401, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706895

RESUMEN

Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.


Asunto(s)
Perfilación de la Expresión Génica , Células Ciliadas Auditivas/citología , Regeneración , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN , Citometría de Flujo , Células Ciliadas Auditivas/fisiología , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
13.
Dev Dyn ; 243(10): 1328-37, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24888499

RESUMEN

BACKGROUND: Cisplatin is a widely used chemotherapeutic agent that can also cause ototoxic injury. One potential treatment for cisplatin-induced hearing loss involves the activation of endogenous inner ear stem cells, which may then produce replacement hair cells. In this series of experiments, we examined the effects of cisplatin exposure on both hair cells and resident stem cells of the mouse inner ear. RESULTS: Treatment for 24 hr with 10 µM cisplatin caused significant loss of hair cells in the mouse utricle, but such damage was not evident until 4 days after the cisplatin exposure. In addition to killing hair cells, cisplatin treatment also disrupted the actin cytoskeleton in remaining supporting cells, and led to increased histone H2AX phosphorylation within the sensory epithelia. Finally, treatment with 10 µM cisplatin appeared to have direct toxic effects on resident stem cells in the mouse utricle. Exposure to cisplatin blocked the proliferation of isolated stem cells and prevented sphere formation when those cells were maintained in suspension culture. CONCLUSION: The results suggest that inner ear stem cells may be injured during cisplatin ototoxicity, thus limiting their ability to mediate sensory repair.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Oído Interno/efectos de los fármacos , Oído Interno/embriología , Células Madre Embrionarias/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Oído Interno/citología , Células Madre Embrionarias/fisiología , Femenino , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/fisiología , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Sáculo y Utrículo/citología , Sáculo y Utrículo/efectos de los fármacos , Sáculo y Utrículo/embriología
14.
Mol Cell Neurosci ; 56: 29-38, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23511189

RESUMEN

Sensorineural hearing loss, which is mainly caused by cochlear hair cell damage, is an intractable disease, as cochlear hair cells and supporting cells are unable to proliferate in postnatal mammals. As a novel and potent treatment for sensorineural hearing loss, we have studied IGF-1 and found that it protects cochlear hair cells from the damage caused by noise and ischemic trauma. Through a clinical trial, we have also confirmed that IGF-1 is an effective treatment for idiopathic sudden sensorineural hearing loss. In the current study, we attempted to identify the downstream pathways of the IGF-1 signal and the mechanisms by which IGF-1 protects the neonatal mouse cochlear hair cells that have been damaged by neomycin. IGF-1 activated both the PI3K/Akt and MEK/ERK pathways to maintain the hair cell numbers in the injured cochlea. The PI3K/Akt pathway specifically protected the cochlear inner hair cells through the inhibition of apoptosis. In contrast, the MEK/ERK pathway induced the cell cycle promotion of Hensen's and Claudius' cells, the supporting cells that are located lateral to the outer hair cells of the cochlea. This cell cycle promotion of the supporting cells resulted in the maintenance of the outer hair cell numbers. These results indicate that IGF-1 is a growth factor that efficiently regulates different mechanisms through different downstream cascades, thereby protecting cochlear hair cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Animales , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos ICR , Neomicina/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Sci Rep ; 14(1): 15903, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987330

RESUMEN

Losing either type of cochlear sensory hair cells leads to hearing impairment. Inner hair cells act as primary mechanoelectrical transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established inner ear damage models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 h, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained until three days post-treatment, after which deterioration in structure and number was observed, culminating in a complete hair cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva , Animales , Ratones , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/patología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/patología , Apoptosis/efectos de los fármacos , Aminoglicósidos/administración & dosificación , Aminoglicósidos/efectos adversos , Aminoglicósidos/toxicidad , Presión Osmótica
16.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645253

RESUMEN

Hearing impairment arises from the loss of either type of cochlear sensory hair cells. Inner hair cells act as primary sound transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 hours, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained intact until three days post-treatment, after which deterioration in structure and number was observed, culminating in cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.

17.
Exp Neurobiol ; 33(2): 68-76, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38724477

RESUMEN

In the auditory system, the spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from inner supporting cells (ISCs). This ATP release sets off a cascade, activating purinergic autoreceptors, opening of Ca2+-activated Cl- channel TMEM16A, Cl- efflux and osmotic cell shrinkage. Then, the shrunken ISCs efficiently regain their original volume, suggesting the existence of mechanisms for refilling Cland K+, priming them for subsequent activity. This study explores the potential involvement of NKCCs (Na+-K+-Cl- cotransporters) and KCCs (K+-Cl- cotransporters) in ISC spontaneous activity, considering their capability to transport both Cl- and K+ ions across the cell membrane. Employing a combination of immunohistochemistry, pharmacological interventions, and shRNA experiment, we unveiled the pivotal role of NKCC1 in cochlear spontaneous activity. Immunohistochemistry revealed robust NKCC1 expression in ISCs, persisting until the 2nd postnatal week. Intriguingly, we observed a developmental shift in NKCC1 expression from ISCs to synaptophysin-positive efferent terminals at postnatal day 18, hinting at its potential involvement in modulating synaptic transmission during the post-hearing period. Experiments using bumetanide, a well-known NKCC inhibitor, supported the functional significance of NKCC1 in ISC spontaneous activity. Bumetanide significantly reduced the frequency of spontaneous extracellular potentials (sEP) and spontaneous optical changes (sOCs) in ISCs. NKCC1-shRNA experiments conducted in cultured cochlear tissues further supported these findings, demonstrating a substantial decrease in event frequency and area. Taken together, we revealed the role of NKCC1 in shaping the ISC spontaneous activity that govern auditory pathway development.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38826689

RESUMEN

Introduction: Mutations in microRNA-96 (miR-96), a microRNA expressed within the hair cells (HCs) of the inner ear, result in progressive hearing loss in both mouse models and humans. In this study, we present the first HC-specific RNA-sequencing (RNA-seq) dataset from newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Methods: Bulk RNA-seq was performed on HCs of newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Differentially expressed gene analysis was conducted on Mir96Dmdo homozygous mutant HCs compared to wildtype littermate controls, followed by GO term and protein-protein interaction analysis on these differentially expressed genes. Results: We identify 215 upregulated and 428 downregulated genes in the HCs of the Mir96Dmdo homozygous mutant mice compared to their wildtype littermate controls. Many of the significantly downregulated genes in Mir96Dmdo homozygous mutant HCs have established roles in HC development and/or known roles in deafness including Myo15a, Myo7a, Ush1c, Gfi1, and Ptprq and have enrichment in gene ontology (GO) terms with biological functions such as sensory perception of sound. Interestingly, upregulated genes in Mir96Dmdo homozygous mutants, including possible miR-96 direct targets, show higher wildtype expression in supporting cells compared to HCs. Conclusion: Our data further support a role for miR-96 in HC development, possibly as a repressor of supporting cell transcriptional programs in HCs. The HC-specific Mir96Dmdo RNA-seq data set generated from this manuscript are now publicly available in a dedicated profile in the gene expression analysis resource (gEAR-https://umgear.org/p?l=miR96).

19.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237527

RESUMEN

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


Asunto(s)
COVID-19 , Bulbo Olfatorio , Animales , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , SARS-CoV-2 , COVID-19/patología , Macaca mulatta , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Inflamación/metabolismo , Macaca fascicularis
20.
Mol Neurobiol ; 60(6): 3100-3112, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36800156

RESUMEN

The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.


Asunto(s)
Sistema de la Línea Lateral , Pez Cebra , Animales , Cabello , Células Ciliadas Auditivas/metabolismo , Sistema de la Línea Lateral/metabolismo , Neomicina/farmacología , Neomicina/metabolismo , Transducción de Señal , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda