Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33974910

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Asunto(s)
Anticuerpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión , Células CHO , COVID-19/patología , COVID-19/virología , Cricetinae , Cricetulus , Microscopía por Crioelectrón , Células Gigantes/citología , Humanos , Fusión de Membrana , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
EMBO J ; 40(24): e108944, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601723

RESUMEN

Severe COVID-19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS-CoV-2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco-2, Calu-3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon-induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS-CoV-2 emerging variants display enhanced syncytia formation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/farmacología , Células Gigantes/virología , Mutación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células HEK293 , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos
3.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732459

RESUMEN

A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ratones , Drosophila/genética , alfa Catenina , Fusión Celular , Proteínas de Drosophila/genética , Poliploidía
4.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305464

RESUMEN

Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.


Asunto(s)
Caenorhabditis elegans , Núcleo Celular , Animales , Núcleo Celular/metabolismo , Caenorhabditis elegans/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Células Gigantes , Drosophila
5.
J Virol ; 98(1): e0135123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38088562

RESUMEN

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , África , COVID-19/virología , Pandemias , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Gigantes/virología
6.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749382

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Asunto(s)
Bronquios , COVID-19 , Células Gigantes , Interferones , Mucosa Respiratoria , SARS-CoV-2 , Anciano , Bronquios/inmunología , Bronquios/virología , COVID-19/inmunología , COVID-19/virología , Niño , Susceptibilidad a Enfermedades , Células Gigantes/inmunología , Células Gigantes/virología , Humanos , Interferones/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , SARS-CoV-2/inmunología , Interferón lambda
7.
EMBO J ; 39(23): e106267, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33051876

RESUMEN

Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2-infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.


Asunto(s)
COVID-19/patología , Células Gigantes/virología , Interacciones Huésped-Patógeno , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , COVID-19/metabolismo , COVID-19/virología , Fusión Celular , Línea Celular , Chlorocebus aethiops , Células Gigantes/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero/virología
8.
Biochem Biophys Res Commun ; 726: 150281, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38909532

RESUMEN

Cell-fusion mediated generation of multinucleated syncytia represent critical feature during viral infection and in development. Efficiency of syncytia formation is usually illustrated as fusion efficiency under given condition by quantifying total number of nuclei in syncytia normalized to total number of nuclei (both within syncytia and unfused cell nuclei) in unit field of view. However heterogeneity in multinucleated syncytia sizes poses challenge in quantification of cell-fusion multinucleation under diverse conditions. Taking in-vitro SARS-CoV-2 spike-protein variants mediated virus-cell fusion model and placenta trophoblast syncytialization as cell-cell fusion model; herein we emphasize wide application of simple unbiased detailed measure of virus-cell and cell-cell multinucleation using experiential cumulative distribution function (CDF) and fusion number events (FNE) approaches illustrating comprehensive metrics for syncytia interpretation.


Asunto(s)
Fusión Celular , Células Gigantes , SARS-CoV-2 , Trofoblastos , Humanos , Células Gigantes/virología , Células Gigantes/citología , SARS-CoV-2/fisiología , Trofoblastos/virología , Trofoblastos/citología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Femenino , COVID-19/virología , Embarazo , Internalización del Virus , Placenta/virología , Placenta/citología
9.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34962256

RESUMEN

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Células Gigantes , Pirimidinas/farmacología , SARS-CoV-2/metabolismo , Estaurosporina/análogos & derivados , Células A549 , COVID-19/metabolismo , Biología Computacional , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Células Gigantes/metabolismo , Células Gigantes/virología , Humanos , Estaurosporina/farmacología
10.
J Theor Biol ; 576: 111627, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-37977477

RESUMEN

Communication via action potentials among neurons has been extensively studied. However, effective communication without action potentials is ubiquitous in biological systems, yet it has received much less attention in comparison. Multi-cellular communication among smooth muscles is crucial for regulating blood flow, for example. Understanding the mechanism of this non-action potential communication is critical in many cases, like synchronization of cellular activity, under normal and pathological conditions. In this paper, we employ a multi-scale asymptotic method to derive a macroscopic homogenized bidomain model from the microscopic electro-neutral (EN) model. This is achieved by considering different diffusion coefficients and incorporating nonlinear interface conditions. Subsequently, the homogenized macroscopic model is used to investigate communication in multi-cellular tissues. Our computational simulations reveal that the membrane potential of syncytia, formed by interconnected cells via connexins, plays a crucial role in propagating oscillations from one region to another, providing an effective means for fast cellular communication. Statement of Significance: In this study, we investigated cellular communication and ion transport in vascular smooth muscle cells, shedding light on their mechanisms under normal and abnormal conditions. Our research highlights the potential of mathematical models in understanding complex biological systems. We developed effective macroscale electro-neutral bi-domain ion transport models and examined their behavior in response to different stimuli. Our findings revealed the crucial role of connexinmediated membrane potential changes and demonstrated the effectiveness of cellular communication through syncytium membranes. Despite some limitations, our study provides valuable insights into these processes and emphasizes the importance of mathematical modeling in unraveling the complexities of cellular communication and ion transport.


Asunto(s)
Comunicación Celular , Conexinas , Potenciales de la Membrana , Comunicación Celular/fisiología , Miocitos del Músculo Liso
11.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527514

RESUMEN

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Humanos , Pulmón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
12.
J Pathol ; 259(3): 254-263, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651103

RESUMEN

SARS-CoV-2 infection is clinically heterogeneous, ranging from asymptomatic to deadly. A few patients with COVID-19 appear to recover from acute viral infection but nevertheless progress in their disease and eventually die, despite persistent negativity at molecular tests for SARS-CoV-2 RNA. Here, we performed post-mortem analyses in 27 consecutive patients who had apparently recovered from COVID-19 but had progressively worsened in their clinical conditions despite repeated viral negativity in nasopharyngeal swabs or bronchioalveolar lavage for 11-300 consecutive days (average: 105.5 days). Three of these patients remained PCR-negative for over 9 months. Post-mortem analysis revealed evidence of diffuse or focal interstitial pneumonia in 23/27 (81%) patients, accompanied by extensive fibrotic substitution in 13 cases (47%). Despite apparent virological remission, lung pathology was similar to that observed in acute COVID-19 individuals, including micro- and macro-vascular thrombosis (67% of cases), vasculitis (24%), squamous metaplasia of the respiratory epithelium (30%), frequent cytological abnormalities and syncytia (67%), and the presence of dysmorphic features in the bronchial cartilage (44%). Consistent with molecular test negativity, SARS-CoV-2 antigens were not detected in the respiratory epithelium. In contrast, antibodies against both spike and nucleocapsid revealed the frequent (70%) infection of bronchial cartilage chondrocytes and para-bronchial gland epithelial cells. In a few patients (19%), we also detected positivity in vascular pericytes and endothelial cells. Quantitative RT-PCR amplification in tissue lysates confirmed the presence of viral RNA. Together, these findings indicate that SARS-CoV-2 infection can persist significantly longer than suggested by standard PCR-negative tests, with specific infection of specific cell types in the lung. Whether these persistently infected cells also play a pathogenic role in long COVID remains to be addressed. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Viral/genética , Células Endoteliales , Síndrome Post Agudo de COVID-19
13.
Biol Proced Online ; 25(1): 22, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495994

RESUMEN

BACKGROUND: The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is mediated through the binding of the SARS-CoV-2 Spike protein via the receptor binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2). Identifying compounds that inhibit Spike-ACE2 binding would be a promising and safe antiviral approach against COVID-19. METHODS: In this study, we used a BSL-2 compatible replication-competent vesicular stomatitis virus (VSV) expressing Spike protein of SARS-CoV-2 with eGFP reporter system (VSV-eGFP-SARS-CoV-2) in a recombinant permissive cell system for high-throughput screening of viral entry blockers. The SARS-CoV-2 permissive reporter system encompasses cells that stably express hACE2-tagged cerulean and H2B tagged with mCherry, as a marker of nuclear condensation, which also enables imaging of fused cells among infected EGFP positive cells and could provide real-time information on syncytia formation. RESULTS: A limited high-throughput screening identified six natural products that markedly inhibited VSV-eGFP-SARS-CoV-2 with minimum toxicity. Further studies of Spike-S1 binding using the permissive cells showed Scillaren A and 17-Aminodemethoxygeldanamycin could inhibit S1 binding to ACE2 among the six leads. A real-time imaging revealed delayed inhibition of syncytia by Scillaren A, Proscillaridin, Acetoxycycloheximide and complete inhibition by Didemnin B indicating that the assay is a reliable platform for any image-based drug screening. CONCLUSION: A BSL-2 compatible assay system that is equivalent to the infectious SARS-CoV-2 is a promising tool for high-throughput screening of large compound libraries for viral entry inhibitors against SARS-CoV-2 along with toxicity and effects on syncytia. Studies using clinical isolates of SARS-CoV-2 are warranted to confirm the antiviral potency of the leads and the utility of the screening system.

14.
Virol J ; 20(1): 97, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208729

RESUMEN

BACKGROUND: SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy. METHODS: Bronchoalveolar fluids from the mild (n = 8, SpO2 > 95%, no hypoxia, within 2-8 days of infection), moderate (n = 8, SpO2 90% to ≤ 93% on room air, respiratory rate ≥ 24/min, breathlessness, within 9-16 days of infection), and severe (n = 8, SpO2 < 90%, respiratory rate > 30/min, external oxygen support, after 17th days of infection) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia. RESULTS: Immunofluorescence studies (S protein-specific antibodies) from each syncytium indicate a very high infection level. We could not find any syncytial cells in mildly infected patients. However, identical (neutrophils or type 2 pneumocytes) and heterotypic (neutrophils-monocytes) plasma membrane initial fusion (indicating initiation of fusion) was observed under TEM in moderately infected patients. Fully matured large-size (20-100 µm) syncytial cells were found in severe acute respiratory distress syndrome (ARDS-like) patients of neutrophils, monocytes, and macrophage origin under SEM. CONCLUSIONS: This ultrastructural study on the syncytial cells from COVID-19 patients sheds light on the disease's stages and types of cells involved in the syncytia formations. Syncytia formation was first induced in type II pneumocytes by homotypic fusion and later with haematopoetic cells (monocyte and neutrophils) by heterotypic fusion in the moderate stage (9-16 days) of the disease. Matured syncytia were reported in the late phase of the disease and formed large giant cells of 20 to 100 µm.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Microscopía Electrónica , Células Epiteliales Alveolares , Macrófagos , Células Gigantes
15.
Cell Mol Life Sci ; 79(5): 227, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35391601

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has caused an unprecedented global health crisis. The SARS-CoV-2 spike, a surface-anchored trimeric class-I fusion glycoprotein essential for viral entry, represents a key target for developing vaccines and therapeutics capable of blocking virus invasion. The emergence of SARS-CoV-2 spike variants that facilitate virus spread and may affect vaccine efficacy highlights the need to identify novel antiviral strategies for COVID-19 therapy. Here, we demonstrate that nitazoxanide, an antiprotozoal agent with recognized broad-spectrum antiviral activity, interferes with SARS-CoV-2 spike maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Engineering multiple SARS-CoV-2 variant-pseudoviruses and utilizing quantitative cell-cell fusion assays, we show that nitazoxanide-induced spike modifications hinder progeny virion infectivity as well as spike-driven pulmonary cell-cell fusion, a critical feature of COVID-19 pathology. Nitazoxanide, being equally effective against the ancestral SARS-CoV-2 Wuhan-spike and different emerging variants, including the Delta variant of concern, may represent a useful tool in the fight against COVID-19 infections.


Asunto(s)
Antivirales , Nitrocompuestos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Tiazoles , Antivirales/farmacología , Humanos , Nitrocompuestos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Tiazoles/farmacología , Tratamiento Farmacológico de COVID-19
16.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202527

RESUMEN

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Enfermedades de los Caballos , Animales , Australia/epidemiología , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Vigilancia de Guardia
17.
J Virol ; 95(20): e0066621, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34288734

RESUMEN

Cedar virus (CedV) is a nonpathogenic member of the Henipavirus (HNV) genus of emerging viruses, which includes the deadly Nipah (NiV) and Hendra (HeV) viruses. CedV forms syncytia, a hallmark of henipaviral and paramyxoviral infections and pathogenicity. However, the intrinsic fusogenic capacity of CedV relative to NiV or HeV remains unquantified. HNV entry is mediated by concerted interactions between the attachment (G) and fusion (F) glycoproteins. Upon receptor binding by the HNV G head domain, a fusion-activating G stalk region is exposed and triggers F to undergo a conformational cascade that leads to viral entry or cell-cell fusion. Here, we demonstrate quantitatively that CedV is inherently significantly less fusogenic than NiV at equivalent G and F cell surface expression levels. We then generated and tested six headless CedV G mutants of distinct C-terminal stalk lengths, surprisingly revealing highly hyperfusogenic cell-cell fusion phenotypes 3- to 4-fold greater than wild-type CedV levels. Additionally, similarly to NiV, a headless HeV G mutant yielded a less pronounced hyperfusogenic phenotype compared to wild-type HeV. Further, coimmunoprecipitation and cell-cell fusion assays revealed heterotypic NiV/CedV functional G/F bidentate interactions, as well as evidence of HNV G head domain involvement beyond receptor binding or G stalk exposure. All evidence points to the G head/stalk junction being key to modulating HNV fusogenicity, supporting the notion that head domains play several distinct and central roles in modulating stalk domain fusion promotion. Further, this study exemplifies how CedV may help elucidate important mechanistic underpinnings of HNV entry and pathogenicity. IMPORTANCE The Henipavirus genus in the Paramyxoviridae family includes the zoonotic Nipah (NiV) and Hendra (HeV) viruses. NiV and HeV infections often cause fatal encephalitis and pneumonia, but no vaccines or therapeutics are currently approved for human use. Upon viral entry, Henipavirus infections yield the formation of multinucleated cells (syncytia). Viral entry and cell-cell fusion are mediated by the attachment (G) and fusion (F) glycoproteins. Cedar virus (CedV), a nonpathogenic henipavirus, may be a useful tool to gain knowledge on henipaviral pathogenicity. Here, using homotypic and heterotypic full-length and headless CedV, NiV, and HeV G/F combinations, we discovered that CedV G/F are significantly less fusogenic than NiV or HeV G/F, and that the G head/stalk junction is key to modulating cell-cell fusion, refining the mechanism of henipaviral membrane fusion events. Our study exemplifies how CedV may be a useful tool to elucidate broader mechanistic understanding for the important henipaviruses.


Asunto(s)
Henipavirus/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Células Gigantes/metabolismo , Glicoproteínas/genética , Células HEK293 , Henipavirus/genética , Infecciones por Henipavirus/metabolismo , Infecciones por Henipavirus/virología , Humanos , Fusión de Membrana/fisiología , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/fisiología , Acoplamiento Viral , Internalización del Virus
18.
Mol Syst Biol ; 17(8): e10239, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339582

RESUMEN

Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Evaluación Preclínica de Medicamentos/métodos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , COVID-19/genética , COVID-19/virología , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Humanos , Imidazoles/farmacología , Pirazinas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Xinafoato de Salmeterol/farmacología , Células Vero
19.
J Med Virol ; 94(1): 342-348, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528721

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The S protein is the key viral protein for associating with ACE2, the receptor for SARS-CoV-2. There are many kinds of posttranslational modifications in S protein. However, the detailed mechanism of palmitoylation of SARS-CoV-2 S remains to be elucidated. In our current study, we characterized the palmitoylation of SARS-CoV-2 S. Both the C15 and cytoplasmic tail of SARS-CoV-2 S were palmitoylated. Fatty acid synthase inhibitor C75 and zinc finger DHHC domain-containing palmitoyltransferase (ZDHHC) inhibitor 2-BP reduced the palmitoylation of S. Interestingly, palmitoylation of SARS-CoV-2 S was not required for plasma membrane targeting of S but was critical for S-mediated syncytia formation and SARS-CoV-2 pseudovirus particle entry. Overexpression of ZDHHC2, ZDHHC3, ZDHHC4, ZDHHC5, ZDHHC8, ZDHHC9, ZDHHC11, ZDHHC14, ZDHHC16, ZDHHC19, and ZDHHC20 promoted the palmitoylation of S. Furthermore, those ZDHHCs were identified to associate with SARS-CoV-2 S. Our study not only reveals the mechanism of S palmitoylation but also will shed important light into the role of S palmitoylation in syncytia formation and virus entry.


Asunto(s)
Membrana Celular/metabolismo , Células Gigantes/metabolismo , Lipoilación/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Aciltransferasas/antagonistas & inhibidores , COVID-19/patología , Línea Celular , Células HEK293 , Humanos , Procesamiento Proteico-Postraduccional/fisiología
20.
J Med Virol ; 94(12): 6073-6077, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35940856

RESUMEN

SARS-CoV-2 infection causes syncytial pneumocyte in patients and this has been considered as a defining feature of severe COVID-19 cases. Traditional methods of syncytia quantification require the morphology characterization of fused cells either with light microscope or fluorescent microscope, which is time-consuming and not accurate. Here we developed a rapid and sensitive coculture system measuring spike-induced syncytia by using NanoLuc complementation system. We found the formation of syncytia occurred rapidly after ACE2-expressing cells exposure to spike protein. In addition, we found furin cleavage as well as the cell surface protease TMPRSS2 enhanced syncytia formation. Finally, we showed that this coculture system can be used to test the ability of different compound to inhibit syncytia formation, thus providing a useful tool to screen anti-syncytial drugs.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Furina/metabolismo , Humanos , Luciferasas , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda