Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Más filtros

Publication year range
1.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750317

RESUMEN

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Asunto(s)
Linfocitos T CD8-positivos , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Diferenciación Celular , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
2.
Annu Rev Immunol ; 39: 51-76, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33428453

RESUMEN

T lymphocytes, the major effector cells in cellular immunity, produce cytokines in immune responses to mediate inflammation and regulate other types of immune cells. Work in the last three decades has revealed significant heterogeneity in CD4+ T cells, in terms of their cytokine expression, leading to the discoveries of T helper 1 (Th1), Th2, Th17, and T follicular helper (Tfh) cell subsets. These cells possess unique developmental and regulatory pathways and play distinct roles in immunity and immune-mediated pathologies. Other types of T cells, including regulatory T cells and γδ T cells, as well as innate lymphocytes, display similar features of subpopulations, which may play differential roles in immunity. Mechanisms exist to prevent cytokine production by T cells to maintain immune tolerance to self-antigens, some of which may also underscore immune exhaustion in the context of tumors. Understanding cytokine regulation and function has offered innovative treatment of many human diseases.


Asunto(s)
Citocinas , Linfocitos T Reguladores , Animales , Humanos , Tolerancia Inmunológica , Inmunidad Celular , Linfocitos T Colaboradores-Inductores , Células Th17
3.
Immunity ; 55(4): 639-655.e7, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35381213

RESUMEN

Adaptive CD4+ T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation.


Asunto(s)
Inmunidad Innata , Interleucina-18 , Células Asesinas Naturales , Células TH1 , Diferenciación Celular , Interleucina-18/metabolismo , Células Asesinas Naturales/inmunología , Proteínas de Dominio T Box/metabolismo , Células TH1/inmunología , Factores de Transcripción/metabolismo
4.
Immunity ; 53(3): 597-613.e6, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32735846

RESUMEN

CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.


Asunto(s)
Citocinas/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Asma/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pyroglyphidae/inmunología , Células TH1/citología , Células Th17/citología , Células Th2/citología
5.
Immunity ; 50(1): 106-120.e10, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650370

RESUMEN

CD4+ T helper (Th) differentiation is regulated by diverse inputs, including the vitamin A metabolite retinoic acid (RA). RA acts through its receptor RARα to repress transcription of inflammatory cytokines, but is also essential for Th-mediated immunity, indicating complex effects of RA on Th specification and the outcome of the immune response. We examined the impact of RA on the genome-wide transcriptional response during Th differentiation to multiple subsets. RA effects were subset-selective and were most significant in Th9 cells. RA globally antagonized Th9-promoting transcription factors and inhibited Th9 differentiation. RA directly targeted the extended Il9 locus and broadly modified the Th9 epigenome through RARα. RA-RARα activity limited murine Th9-associated pulmonary inflammation, and human allergic inflammation was associated with reduced expression of RA target genes. Thus, repression of the Th9 program is a major function of RA-RARα signaling in Th differentiation, arguing for a role for RA in interleukin 9 (IL-9) related diseases.


Asunto(s)
Hipersensibilidad/inmunología , Pulmón/fisiología , Neumonía/inmunología , Receptor alfa de Ácido Retinoico/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Represión Epigenética , Células HEK293 , Humanos , Hipersensibilidad/genética , Interleucina-9/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/genética , Receptor alfa de Ácido Retinoico/genética , Transducción de Señal , Transcripción Genética , Tretinoina/metabolismo
6.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31377117

RESUMEN

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Memoria Inmunológica , Infecciones/inmunología , Interferón gamma/inmunología , ARN no Traducido/inmunología , Linfocitos T/inmunología , Animales , Cromatina/genética , Cromatina/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Infecciones/genética , Infecciones/patología , Interferón gamma/genética , Ratones , ARN no Traducido/genética , Linfocitos T/patología
7.
Proc Natl Acad Sci U S A ; 121(24): e2312837121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838013

RESUMEN

Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Interferón gamma , Células TH1 , Células TH1/inmunología , Animales , Memoria Inmunológica/inmunología , Ratones , Interferón gamma/metabolismo , Interferón gamma/inmunología , Células T de Memoria/inmunología , Ratones Endogámicos C57BL , Legionella pneumophila/inmunología , Esclerosis Múltiple/inmunología , Interleucina-12/metabolismo , Interleucina-12/inmunología
8.
RNA ; 30(4): 418-434, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38302256

RESUMEN

3' untranslated regions (3' UTRs) are critical elements of messenger RNAs, as they contain binding sites for RNA-binding proteins (RBPs) and microRNAs that affect various aspects of the RNA life cycle including transcript stability and cellular localization. In response to T cell receptor activation, T cells undergo massive expansion during the effector phase of the immune response and dynamically modify their 3' UTRs. Whether this serves to directly regulate the abundance of specific mRNAs or is a secondary effect of proliferation remains unclear. To study 3'-UTR dynamics in T helper cells, we investigated division-dependent alternative polyadenylation (APA). In addition, we generated 3' end UTR sequencing data from naive, activated, memory, and regulatory CD4+ T cells. 3'-UTR length changes were estimated using a nonnegative matrix factorization approach and were compared with those inferred from long-read PacBio sequencing. We found that APA events were transient and reverted after effector phase expansion. Using an orthogonal bulk RNA-seq data set, we did not find evidence of APA association with differential gene expression or transcript usage, indicating that APA has only a marginal effect on transcript abundance. 3'-UTR sequence analysis revealed conserved binding sites for T cell-relevant microRNAs and RBPs in the alternative 3' UTRs. These results indicate that poly(A) site usage could play an important role in the control of cell fate decisions and homeostasis.


Asunto(s)
MicroARNs , Poliadenilación , Regiones no Traducidas 3' , MicroARNs/genética , MicroARNs/metabolismo , RNA-Seq , ARN Mensajero/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Immunity ; 46(6): 983-991.e4, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28623086

RESUMEN

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Asunto(s)
Comunicación Autocrina , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Proteínas de Dominio T Box/metabolismo , Células TH1/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Proteínas de Dominio T Box/genética , Células TH1/microbiología , Células TH1/virología , Transcriptoma
10.
Immunol Rev ; 306(1): 224-233, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34811768

RESUMEN

Humoral and cellular responses to viral infections coexist in a dynamic equilibrium that often results in efficient viral clearance. However, in some infections one of the two responses prevails, for instance when an overactivation of cytotoxic T cells is accompanied by weak and insufficient antibody responses. Although the cellular response is usually sufficient to control a primary viral infection, in some cases clearance is not complete and persistent infections ensue. In order to design effective therapeutic or vaccination strategies aiming at inducing early and potent neutralizing antibody responses, a deep knowledge of the cellular and molecular determinants of antiviral immune responses is needed. Here, we review our understanding on the spatiotemporal dynamics of antiviral humoral immune responses, with a particular focus on recent studies using intravital imaging approaches as an insightful complement to more traditional techniques.


Asunto(s)
Linfocitos B , Películas Cinematográficas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales , Humanos , Inmunidad Humoral
11.
Proc Natl Acad Sci U S A ; 119(30): e2203659119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858456

RESUMEN

This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.


Asunto(s)
COVID-19 , Citocinas , SARS-CoV-2 , Linfocitos T Colaboradores-Inductores , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , COVID-19/sangre , COVID-19/inmunología , Convalecencia , Citocinas/sangre , Humanos , Interferón gamma/sangre , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
12.
Eur J Immunol ; 53(12): e2250218, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36792132

RESUMEN

Polarized T helper cell (Th cell) responses are important determinants of host protection. Th cell subsets tailor their functional repertoire of cytokines to their cognate antigens to efficiently contribute to their clearance. In contrast, in settings of immune abrogation, these polarized cytokine patterns of Th cells can mediate tissue damage and pathology resulting in allergy or autoimmunity. Recent technological developments in single-cell genomics and proteomics as well as advances in the high-dimensional bioinformatic analysis of complex datasets have challenged the prevailing Th cell subset classification into Th1, Th2, Th17, and other subsets. Additionally, systems immunology approaches have revealed that instructive input from the peripheral tissue microenvironment can have differential effects on the overall phenotype and molecular wiring of Th cells depending on their spatial distribution. Th cells from the blood or secondary lymphoid organs are therefore expected to follow distinct rules of regulation. In this review, the functional heterogeneity of Th cell subsets will be reviewed in the context of new technological developments and T-cell compartmentalization in tissue niches. This work will especially focus on challenges to the traditional boundaries of Th cell subsets and will discuss the underlying regulatory checkpoints, which could reveal new therapeutic strategies for various immune-mediated diseases.


Asunto(s)
Hipersensibilidad , Linfocitos T Colaboradores-Inductores , Humanos , Citocinas , Células Th17 , Autoinmunidad , Subgrupos de Linfocitos T
13.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605563

RESUMEN

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Lipoproteínas LDL , Macrófagos , Linfocitos T Colaboradores-Inductores , Animales , Ratones , Aterosclerosis/genética , Citocinas/metabolismo , Células Espumosas/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
14.
Trends Immunol ; 42(6): 461-463, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33980468

RESUMEN

How does the immune system tailor effector function to particular threats? Krueger et al. reveal that infection with Salmonella enterica (SE), but not with influenza A virus (IAV), drives interleukin (IL)-12-dependent outgrowth of interferon (IFN)-γhi type 1 T helper (Th1) cells, leading to superior protection against this phagosomal pathogen. Among these cells are ZEB2-dependent cytotoxic Th1 cells marked by CX3CR1 expression.


Asunto(s)
Virus de la Influenza A , Células TH1 , Bacterias
15.
Helicobacter ; 29(3): e13097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819071

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS: Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS: CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION: H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.


Asunto(s)
Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Receptores CCR6 , Linfocitos T Reguladores , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Citometría de Flujo , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Receptores CCR6/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología
16.
Immunol Invest ; 53(2): 261-280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050895

RESUMEN

INTRODUCTION: The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC. METHODS: Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays. RESULTS: ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect. CONCLUSION: mTORC1 is essential for the anti-CRC activity of ThGM cells.


Asunto(s)
Neoplasias Colorrectales , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Granulocitos/metabolismo , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sirolimus , Linfocitos T Colaboradores-Inductores , Factores de Transcripción
17.
J Periodontal Res ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962877

RESUMEN

AIM: Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS: Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS: Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS: Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.

18.
Methods ; 220: 115-125, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37967756

RESUMEN

Autoimmune diseases (AD) consist of a spectrum of disease entities whose etiologies are very complex and still not well understood. Every individual has the potential for developing AD under appropriate conditions because the body contains lymphocytes that are potentially reactive with self-antigens. The aims of this study are to (1) explore the flow cytometry method to identify the frequency of various circulating CD4+ T helper (Th) cell-subsets, including Th1, Th2, Th9, Th17, Th17.1, and Th22; (2) In parallel, to examine multiplex ELISA method for pathogenic inflammatory cytokines/chemokines, and (3) To assess the correlation of expression of T cell-subsets with serum cytokines/chemokines and understand its clinical importance with available AD treatments. We analyzed Th17, Th17.1, Th22, Th2, Th1, and Th9 Th cell populations and compared the concentrations of 67 cytokines/chemokines in healthy as well as AD-diagnosed patients. We observed that patients with autoimmune markers had significantly elevated percentages of naïve (Th17, Th22, and Th9) as well as memory (Th17 and Th22) Th cell-subsets, along with increased concentrations of cytokines/chemokines (Eotaxin, TNFß, and FABP4). The percentage of Th cell-subsets correlated positively or negatively with the production of cytokines/chemokines of patients diagnosed with AD. Our study demonstrates that the naïve and memory Th cell-subsets with positive correlations to cytokines/chemokines show new diagnostic markers to predict the patients' outcome, while the negative correlation of cytokines/chemokines shows the response to autoimmune therapies. Our findings of Th cell-subsets by flow cytometry and cytokines/chemokines by multiplex ELISA suggest that CCR6+ Th cell-subsets (Th17, Th17.1, Th22, and Th9) contribute to our understanding of the pathogenesis of AD and identify the new onset of AD from the autoimmune spectrum. Our findings highlight the importance of CCR6+ as a possible marker in the characterization, treatment, and monitoring of AD.


Asunto(s)
Enfermedades Autoinmunes , Citocinas , Humanos , Subgrupos de Linfocitos T , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Citometría de Flujo , Células Th17
19.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607957

RESUMEN

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Asunto(s)
Anticuerpos Antivirales/sangre , Pueblos Indígenas/estadística & datos numéricos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Activación de Linfocitos/inmunología , Australia , Linfocitos B/inmunología , Humanos , Inmunoglobulina G/sangre , Memoria Inmunológica/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Recuento de Linfocitos , Vacunación Masiva , Riesgo , Células T Auxiliares Foliculares/inmunología , Linfocitos T/inmunología
20.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999993

RESUMEN

The process of thyroid autoimmunization develops against the background of genetic predispositions associated with class II human leukocyte antigens (HLA-DR), as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), and forkhead transcription box protein P3 (FOXP3). Environmental factors, such as vitamin D deficiency, Zn, Se, and Mg, as well as infections, chronic stress, pregnancy, smoking, alcohol, medications, intestinal dysbiosis, and malnutrition, also play an important role. The first stage of autoimmunization involves the accumulation of macrophages and dendritic cells, as well as plasma cells. In the second stage, the mutual interactions of individual cells in the immune system lead to a decrease in the level of CD8+ in favor of CD4+, which intensifies the synthesis of T lymphocyte derivatives, especially Th1, Th17, Tfh, and Tc, reducing the level of Treg. Consequently, the number of the anti-inflammatory cytokines IL10 and IL2 decreases, and the synthesis of the pro-inflammatory cytokines IL-2, Il-12, Il-17, IL-21, IL-22, IFN-γ, and TNF-α increases. The latter two especially trigger the pyroptosis process involving the inflammasome. Activation of the inflammasome by IL-ß and IL-18 produced by macrophages is one of the mechanisms of pyroptosis in the course of Hashimoto's thyroiditis, involving Gram-negative bacteria and NLRC4. In the next step, the apoptosis of thyroid cells is initiated by the intensification of perforin, granzyme, and proteoglycan synthesis by Tc and NK cells. The current findings raise many possibilities regarding interventions related to the inhibition of pro-inflammatory cytokines and the stimulation of anti-inflammatory cytokines produced by both T and B lymphocytes. Furthermore, since there is currently no effective method for treating thyroid autoimmunity, a summary of the review may provide answers regarding the treatment of not only Hashimoto's thyroiditis, but also other autoimmune diseases associated with autoimmunity.


Asunto(s)
Enfermedad de Hashimoto , Humanos , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/metabolismo , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Citocinas/metabolismo , Animales , Autoinmunidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda