Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
J Biol Chem ; 300(1): 105500, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013089

RESUMEN

The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.


Asunto(s)
Amoníaco , Redes y Vías Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Dibenzodioxinas Policloradas , Animales , Masculino , Ratones , Amoníaco/sangre , Amoníaco/metabolismo , Fibrosis , Glutamina/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos
2.
BMC Genomics ; 25(1): 809, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198768

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of ß-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.


Asunto(s)
Hígado , Ratones Endogámicos C57BL , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Ratones , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Perfilación de la Expresión Génica
3.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36148682

RESUMEN

The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated ß-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of ß-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of ß-catenin. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Neoplasias del Colon , Contaminantes Ambientales , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligandos , Quinurenina , Triptófano , Actinas/metabolismo , Neoplasias del Colon/genética , ARN
4.
Toxicol Appl Pharmacol ; 487: 116956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735589

RESUMEN

Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Hígado , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Dibenzodioxinas Policloradas/toxicidad , Ratas , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga
5.
Toxicol Appl Pharmacol ; 489: 117010, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901696

RESUMEN

Humoral responses to respiratory viruses, such as influenza viruses, develop over time and are central to protection from repeated infection with the same or similar viruses. Epidemiological and experimental studies have linked exposures to environmental contaminants that bind the aryl hydrocarbon receptor (AHR) with modulated antibody responses to pathogenic microorganisms and common vaccinations. Other studies have prompted investigation into the potential therapeutic applications of compounds that activate AHR. Herein, using two different AHR ligands [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester (ITE), to modulate the duration of AHR activity, we show that the humoral response to viral infection is dependent upon the duration and timing of AHR signaling, and that different cellular elements of the response have different sensitivities. When AHR activation was initiated prior to infection with influenza A virus, there was suppression of all measured elements of the humoral response (i.e., the frequency of T follicular helper cells, germinal center B cells, plasma cells, and circulating virus-specific antibody). However, when the timing of AHR activation was adjusted to either early (days -1 to +5 relative to infection) or later (days +5 onwards), then AHR activation affected different aspects of the overall humoral response. These findings highlight the importance of considering the timing of AHR activation in relation to triggering an immune response, particularly when targeting the AHR to manipulate disease processes.


Asunto(s)
Inmunidad Humoral , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Inmunidad Humoral/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Femenino , Factores de Tiempo , Ratones , Ratones Endogámicos C57BL , Indoles/farmacología , Transducción de Señal/efectos de los fármacos , Anticuerpos Antivirales , Infecciones por Orthomyxoviridae/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/metabolismo , Ligandos , Tiazoles
6.
Exp Cell Res ; 429(1): 113617, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172753

RESUMEN

Cellular homeostasis requires the use of multiple environmental sensors that can respond to a variety of endogenous and exogenous compounds. The aryl hydrocarbon receptor (AHR) is classically known as a transcription factor that induces genes that encode drug metabolizing enzymes when bound to toxicants such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD). The receptor has a growing number of putative endogenous ligands, such as tryptophan, cholesterol, and heme metabolites. Many of these compounds are also linked to the translocator protein (TSPO), an outer mitochondrial membrane protein. Given a portion of the cellular pool of the AHR has also been localized to mitochondria and the overlap in putative ligands, we tested the hypothesis that crosstalk exists between the two proteins. CRISPR/Cas9 was used to create knockouts for AHR and TSPO in a mouse lung epithelial cell line (MLE-12). WT, AHR-/-, and TSPO-/- cells were then exposed to AHR ligand (TCDD), TSPO ligand (PK11195), or both and RNA-seq was performed. More mitochondrial-related genes were altered by loss of both AHR and TSPO than would have been expected just by chance. Some of the genes altered included those that encode for components of the electron transport system and the mitochondrial calcium uniporter. Both proteins altered the activity of the other as AHR loss caused the increase of TSPO at both the mRNA and protein level and loss of TSPO significantly increased the expression of classic AHR battery genes after TCDD treatment. This research provides evidence that AHR and TSPO participate in similar pathways that contribute to mitochondrial homeostasis.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Ratones , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Células Epiteliales/metabolismo , Ligandos , Pulmón/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
7.
Ecotoxicol Environ Saf ; 273: 116172, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458072

RESUMEN

The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.


Asunto(s)
Glioblastoma , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Movimiento Celular
8.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201268

RESUMEN

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3ß levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.


Asunto(s)
Apoptosis , Ceramidas , Estrés del Retículo Endoplásmico , Neuronas , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Transducción de Señal , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Animales , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ceramidas/metabolismo , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos
9.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256218

RESUMEN

Endocrine-disrupting chemicals (EDCs) might contribute to the increase in female-specific cancers in Western countries. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) is considered the "prototypical toxicant" to study EDCs' effects on reproductive health. Epigenetic regulation by small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), is crucial for controlling cancer development. The aim of this study was to analyze transcriptional activity and sncRNA expression changes in the KGN cell line after acute (3 h) and chronic (72 h) exposure to 10 nM TCDD in order to determine whether sncRNAs' deregulation may contribute to transmitting TCDD effects to the subsequent cell generations (day 9 and day 14 after chronic exposure). Using Affymetrix GeneChip miRNA 4.0 arrays, 109 sncRNAs were found to be differentially expressed (fold change < -2 or >2; p-value < 0.05) between cells exposed or not (control) to TCDD for 3 h and 72 h and on day 9 and day 14 after chronic exposure. Ingenuity Pathway Analysis predicted that following the acute and chronic exposure of KGN cells, sncRNAs linked to cellular development, growth and proliferation were downregulated, and those linked to cancer promotion were upregulated on day 9 and day 14. These results indicated that TCDD-induced sncRNA dysregulation may have transgenerational cancer-promoting effects.


Asunto(s)
Disruptores Endocrinos , MicroARNs , Neoplasias , Dibenzodioxinas Policloradas , ARN Pequeño no Traducido , Humanos , Femenino , MicroARNs/genética , Dibenzodioxinas Policloradas/toxicidad , Epigénesis Genética , Células de la Granulosa
10.
Cleft Palate Craniofac J ; : 10556656241286314, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314083

RESUMEN

OBJECTIVE: The aetiology of CL/P is complicated, with both genetic and environmental factors. This study aimed to investigate the association between TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) exposure and changes in the expression of miR-214-3p in the context of cleft palate. DESIGN: In this study, we established a fetal mouse cleft palate model using TCDD and differentially expressed miRNAs were analysed by microarray analysis and verified by qRT-PCR. Finally, we demonstrated the effects of TCDD and microRNAs on the proliferation and migration of mesenchymal cells by using CCK8, EDU, Transwell, and wound-healing assays. RESULTS: Our findings revealed significant upregulation of miRNAs such as miR-214-3p, miR-296-5p, and miR-33-5p in the TCDD intervention group, while miRNAs like miR-92a-3p, miR-126a-3p, and miR-411-5p were significantly downregulated. Notably, qRT-PCR testing confirmed a significant difference in miR-214-3P expression. Further investigations involved the overexpression of miR-214-3p, reducing cell proliferation and migration in primary mouse embryonic palatal mesenchymal (MEPM) cells. CONCLUSIONS: These results are consistent with the finding that TCDD suppresses palatal mesenchymal cell proliferation and migration through miR-214-3p. In conclusion, miR-214-3p probably plays a role in TCDD-induced cleft palates in mice.

11.
Toxicol Appl Pharmacol ; 471: 116550, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37172768

RESUMEN

The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.


Asunto(s)
Hígado Graso , Hepatopatías , Dibenzodioxinas Policloradas , ARN Largo no Codificante , Ratones , Animales , Dibenzodioxinas Policloradas/toxicidad , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Xenobióticos/metabolismo , Hígado , Hígado Graso/metabolismo , Hepatopatías/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Comunicación Celular , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/farmacología
12.
Ecotoxicol Environ Saf ; 252: 114595, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753968

RESUMEN

2,3,7,8-tet-rachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are two typical persistent organic pollutants (POPs), both of which accumulate in the liver and have potential carcinogenic hepatic effects. The underlying molecular mechanisms of pathogenesis of hepatocellular carcinoma (HCC) remain elusive when exposure to POPs. The aim of this study is to explore the key genes involved in HCC when exposure to TCDD and α-endosulfan by weighted gene co-expression network analysis (WGCNA). First, we performed co-expressed analysis on HCC and normal condition, based on WGCNA. In results, seven co-expressed modules were identified from 56 human liver samples, and the brown module correlated with five stages of HCC. Subsequently, we predicted that human five liver diseases were associated with exposure to TCDD and/or α-endosulfan by Nextbio analysis. Functional enrichment analysis showed that the brown module enriched in oxidation-reduction process, DNA replication, oxidoreductase activity and aging, which were the same as the results when exposure to the mixture of TCDD and α-endosulfan. Lastly, based on the protein-protein interaction network, we identified three novel genes including HK2, EXO1 and PFKP as key genes in HCC associated with exposure to TCDD and α-endosulfan mixture. In addition, survival analysis of key genes in Kaplan-Meier plotter demonstrated that aberrant expression levels of all the three key genes were associated with poor prognosis of HCC. Finally, Western blot analysis confirmed that protein expression levels of PFKP and HK2 in the three exposed groups were significantly elevated, while EXO1 were significantly upregulated when exposure to TCDD and α-endosulfan mixture in HepaRG cells. This study provides a new perspective to the understanding of the genetic mechanism of HCC when exposure to POPs.


Asunto(s)
Carcinoma Hepatocelular , Contaminantes Ambientales , Neoplasias Hepáticas , Dibenzodioxinas Policloradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endosulfano , Dibenzodioxinas Policloradas/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Perfilación de la Expresión Génica/métodos , Contaminantes Ambientales/toxicidad
13.
Ecotoxicol Environ Saf ; 258: 114990, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156038

RESUMEN

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, has a proven reproductive toxicity. Due to the lack of evidence on the multigenerational female reproductive toxicity of TCDD through the maternal exposure, the current study aims to evaluate, on the one hand, the acute reproductive toxicity of TCDD on adult female pre-gestational exposed to a critical single dose of TCDD (25 µg/kg) for a week (group referred to as AFnG; adult female/non-gestation). On the other hand, the transcription, hormonal and histological effects of TCDD on the females of two generations F1 and F2, were also investigated after the exposure of pregnant females to TCDD on gestational day 13 (GD13) (group referred to as AFG; adult female/gestation). First, our data showed alternations in the ovarian expressional pattern of certain key genes involved in the detoxification of TCDD as well as in the biosynthesis of steroidal hormones. The expression of Cyp1a1 was highly induced in TCDD-AFnG group, but reduced in both F1 and F2. While the transcripts levels of Cyp11a1 and 3ßhsd2 were decreased, Cyp19a1 transcripts were increased as a function of TCDD exposure. This was synchronized with a dramatic increase in the level of estradiol hormone in the females of both experimental groups. Beside a significant reduce in their size and weight, ovaries of TCDD-exposed females showed serious histological alterations marked by atrophy of the ovary, congestion in the blood vessels, necrosis in the layer of granular cells, dissolution of the oocyte and nucleus of ovarian follicles. Finally, the female fertility was dramatically affected across generations with a reduced male\female ratio. Our data indicate that the exposure of pregnant female to TCDD has serious negative effects in the female productive system across generations and suggest the use of hormonal alternation as biomarker to monitor and assess the indirect exposure of these generations to TCDD.


Asunto(s)
Infertilidad Femenina , Dibenzodioxinas Policloradas , Embarazo , Animales , Ratones , Humanos , Femenino , Masculino , Dibenzodioxinas Policloradas/toxicidad , Dibenzodioxinas Policloradas/metabolismo , Ovario , Ratones Endogámicos BALB C , Reproducción , Hormonas/metabolismo
14.
J Biol Chem ; 297(2): 100886, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34146543

RESUMEN

The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Cullin/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Células Cultivadas , Contaminantes Ambientales/toxicidad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Ratones , Proteolisis
15.
Mass Spectrom Rev ; 40(3): 236-254, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32530096

RESUMEN

Chlorinated dioxins are labeled and recognized by both the World Health Organization and the United Nations Environmental Programme (UNEP) as "persistent organic pollutants". Their potential for high toxicity is one of the primary factors behind intense public and regulatory scrutiny and the need to measure the compounds at very low limits, specifically the isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). This article highlights the early mass spectrometry methods to investigate, detect, confirm, and quantify chlorinated dioxins and the initial applications involving human biomonitoring, as attempts were made to attribute health effects to TCDD exposure. This effort represented a complex and difficult scientific response to the pressing need to investigate expected exposures and alleged subsequent medical effects, which in the case of the Viet Nam veterans was being attempted a decade or more after their exposure. It is noteworthy that this method and its development touched on delicate issues involving human subjects, war veterans, environmental contamination, and was difficult not only scientifically, but for ethical and political reasons as well. Stable-isotope dilution with analysis by gas chromatography/high-resolution mass spectrometry (GC/HRMS) became the method of choice because of its ability to monitor characteristic ions and isotope ratios to quantify and qualify/confirm the analyte in the presence of coextracting and coeluting interferences at these low levels with the highest possible confidence. This method was rigorously tested and validated before it was used to discover and monitor levels in the environment and in various populations at then unprecedented low levels. These early studies demonstrated the feasibility of monitoring dioxins in humans even decades after exposure, and led to the detection of 2,3,7,8-TCDD in the general population as well as specific overexposed populations. These studies also provided strong evidence regarding the origins of the 2,3,7,8-isomer in the environment. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Asunto(s)
Dioxinas/análisis , Dioxinas/toxicidad , Contaminantes Ambientales/análisis , Espectrometría de Masas/métodos , Animales , Dioxinas/farmacocinética , Contaminantes Ambientales/farmacocinética , Contaminantes Ambientales/toxicidad , Cromatografía de Gases y Espectrometría de Masas/métodos , Semivida , Humanos , Leche Humana/química , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Dibenzodioxinas Policloradas/análisis , Primates , Veteranos , Vietnam
16.
Environ Res ; 210: 112906, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35181307

RESUMEN

Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Animales , Humanos , Hígado , Ratones , Dibenzodioxinas Policloradas/toxicidad , Ratas , Ratas Sprague-Dawley , Transcriptoma
17.
Ecotoxicol Environ Saf ; 237: 113538, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483143

RESUMEN

Several naturally occurring dioxins, including 1,3,7-tribromodibenzo-p-dioxin (1,3,7-TriBDD), synthesized by red algae, have been detected in the marine environment. As 1,3,7-TriBDD is accumulated in mussels and fish, predators, such as marine birds, are exposed to this congener, similar to anthropogenic dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD). However, little is known about the impact of 1,3,7-TriBDD exposure on the bird health. To understand the effects of 1,3,7-TriBDD on birds, the phenotypic effects and hepatic transcriptome were investigated in chicken (Gallus gallus) embryos treated with 27 µM (2.9 ng/g egg) and 137 µM (14.4 ng/g egg) 1,3,7-TriBDD. The blood glucose levels in the 1,3,7-TriBDD-treated groups were lower than those in the control group. The transcriptome analysis of 6520 sequences in the 27 and 137 µM 1,3,7-TriBDD-treated groups identified 733 and 596 differentially expressed genes (DEGs). Cytochrome P450 1A4 and 1A5 were also identified as DEGs, suggesting that the aryl hydrocarbon receptor is activated by this congener. Pathway and network analyses with DEGs suggested that 1,3,7-TriBDD may induce carcinogenic effects and metabolic alterations. These results were similar to the effects on TCDD-treated embryos. Nevertheless, the overall transcriptome results suggested that compared with TCDD, 1,3,7-TriBDD has a unique impact on insulin- and peroxisome-signaling pathways in chicken embryos. Differences in altered transcriptome profiles between 1,3,7-TriBDD- and TCDD-treated embryos may lead to different phenotypic effects: less severe effects of 1,3,7-TriBDD and more fatal effects of TCDD. Collectively, these findings warrant the further assessment of the hazard and risk of 1,3,7-TriBDD on marine animals, considering increased exposure due to climate change.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Animales , Embrión de Pollo , Pollos/metabolismo , Dioxinas/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transcriptoma
18.
Drug Chem Toxicol ; 45(6): 2463-2470, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34308744

RESUMEN

The present study aimed to investigate the protective role of capsaicin in a rat model of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD)-induced toxicity. Exposure to TCDD which is an environmental toxicant causes severe toxic effects in the animal and human tissues. Therefore, the potential protective effect of capsaicin in TCDD-induced organ damage was investigated in rats by measuring thiobarbituric acid reactive substances (TBARS) level, superoxide dismutase (SOD) activity, and glutathione (GSH) level in the heart, liver, and kidney tissues for oxidant/antioxidant balance. Thirty-two healthy adults (250-300 g weight and 3-4 months old) male Wistar albino rats were randomly distributed into four equal groups (n = 8): Control, CAP, TCDD, TCDD + CAP. A dose of 2 µg/kg TCDD or a dose of 25 mg/kg capsaicin were dissolved in corn oil and orally administered to the rats for 30 days. The results indicated that TCDD-induced oxidative stress by increasing the level of TBARS and by decreasing the levels of GSH, and SOD activity in the tissues of rats. However, capsaicin treatment was significantly decreased TBARS levels and was significantly increased GSH level and SOD activity (p < 0.05). In addition, capsaicin (25 mg/kg) significantly attenuated TCDD-induced histopathological alteration associated with oxidative stress in the heart, liver, and kidney tissues (p < 0.05). As capsaicin regulates oxidative imbalance and attenuates histopathological alterations in the rat tissues, it may be preventing agents in TCDD toxicity.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Animales , Masculino , Ratas , Antioxidantes/farmacología , Capsaicina/farmacología , Aceite de Maíz/farmacología , Dioxinas/farmacología , Glutatión/metabolismo , Oxidantes , Estrés Oxidativo , Dibenzodioxinas Policloradas/toxicidad , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico
19.
Environ Toxicol ; 37(9): 2314-2323, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35661558

RESUMEN

The possibility of chemical contamination is an important issue to consider when designing a cell therapy strategy. Both bisphenol A (BPA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are among the most environmentally relevant endocrine disrupting chemicals (EDCs, compounds with a high affinity for adipose tissue) recently studied. Adipose-derived stem cells (ASCs) are mesenchymal stromal cells (MSCs) obtained from adipose tissue widely used in regenerative medicine to prevent and treat diseases in several tissues and organs. Although the experimental use of tissue-engineered constructs requires careful analysis for approval and implantation, there has been a recent increase in the number of approved clinical trials for this promising strategy. This study aimed to evaluate cell viability, apoptosis, DNA damage, and the adipogenic or osteogenic differentiation potential of rat adipose-derived stem cells (rASCs) exposed to previously established non-cytotoxic doses of BPA and TCDD in vitro. Results demonstrated that 10 µM of BPA and 10 nM of TCDD were able to significantly reduce cell viability, while all exposure levels resulted in DNA damage, although did not increase the apoptosis rate. According to the analysis of adipogenic differentiation, 1 µM of BPA induced the significant formation of oil droplets, suggesting an increased adipocyte differentiation, while both 10 µM of BPA and 10 nM of TCDD decreased adipocyte differentiation. Osteogenic differentiation did not differ among the treatments. As such, BPA and TCDD in the concentrations tested can modify important processes in rASCs such as cell viability, adipogenic differentiation, and DNA damage. Together, these findings prove that EDCs play an important role as contaminants, putatively interfering in cell differentiation and thus impairing the therapeutic use of ASCs.


Asunto(s)
Dibenzodioxinas Policloradas , Adipocitos , Tejido Adiposo , Animales , Compuestos de Bencidrilo , Diferenciación Celular , Osteogénesis , Fenoles , Dibenzodioxinas Policloradas/toxicidad , Ratas , Células Madre
20.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216185

RESUMEN

Rupture of the basement membrane in fused palate tissue can cause the palate to separate after fusion in mice, leading to the development of cleft palate. Here, we further elucidate the mechanism of palatal separation after palatal fusion in 8-10-week-old ICR female mice. On day 12 of gestation, 40 µg/kg of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), sufficient to cause cleft palate in 100% of mice, was dissolved in 0.4 mL of olive oil containing toluene and administered as a single dose via a gastric tube. Fetal palatine frontal sections were observed by H&E staining, and epithelial cell adhesion factors, apoptosis, and cell proliferation were observed from the anterior to posterior palate. TUNEL-positive cells and Ki67-positive cells were observed around the posterior palatal dissection area of the TCDD-treated group. Moreover, in fetal mice exposed to TCDD, some fetuses exhibited cleft palate dehiscence during fusion. The results suggest that palatal dehiscence may be caused by abnormal cell proliferation in epithelial tissues, decreased intercellular adhesion, and inhibition of mesenchymal cell proliferation. By elucidating the mechanism of cleavage after palatal fusion, this research can contribute to establishing methods for the prevention of cleft palate development.


Asunto(s)
Fisura del Paladar/inducido químicamente , Fisura del Paladar/metabolismo , Hueso Paladar/efectos de los fármacos , Hueso Paladar/metabolismo , Dibenzodioxinas Policloradas/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Membrana Basal/patología , Proliferación Celular/efectos de los fármacos , Fisura del Paladar/patología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Femenino , Etiquetado Corte-Fin in Situ/métodos , Masculino , Ratones , Ratones Endogámicos ICR , Hueso Paladar/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda