Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Fish Biol ; 99(6): 2008-2017, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34520041

RESUMEN

Flood discharge results in total dissolved gas (TDG) supersaturation downstream of a dam during the flood period. Fish suffer death from gas bubble disease (GBD) caused by TDG supersaturation. Nonetheless, current studies mainly attach importance to the survival of benthic fish affected by TDG supersaturation in the Yangtze River in China. Few studies have attempted to investigate the survival of pelagic fish influenced by TDG supersaturated water and compare the tolerance characteristics to TDG supersaturation between benthic and pelagic fish. To identify the survival of fish species that inhabit the various water layers affected by TDG supersaturation, silver carp (Hypophthalmichthys molitrix) (pelagic fish) and common carp (Cyprinus carpio) (benthic fish) were chosen to conduct an acute exposure experiment of four different TDG supersaturation levels (125%, 130%, 135% and 140%). The findings illustrated that the two fish species both exhibited evident aberrant behaviours of maladjustment in TDG supersaturated water. Obvious GBD symptoms were also found in the test fish. The survival probability of silver carp and common carp decreased with increasing levels of TDG supersaturation. The median survival time (ST50 ) values of the silver carp exposed to four levels of TDG supersaturated water (125%, 130%, 135% and 140%) were 26.84, 7.96, 5.56 and 3.62 h, respectively, whereas the ST50 values of common carp were 53.50, 26.00, 16.50 and 11.70 h, respectively. When compared with common carp, silver carp had a weaker tolerance to TDG-supersaturated water and were vulnerable to GBD. It shows that levels above 125% are not safe for common carp survival. In terms of the tolerance threshold value, silver carp merits further investigation because it showed lower tolerance to TDG than did common carp.


Asunto(s)
Carpas , Movimientos del Agua , Animales , Inundaciones , Gases , Ríos
2.
Ecotoxicol Environ Saf ; 201: 110855, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540620

RESUMEN

Total dissolved gas (TDG) supersaturation generated by discharged flood water may cause the death of fish downstream of dams and severely threaten their survival during the flood season. No study has performed to investigate the effects of TDG on fish dwelling in shallows in China. Furthermore, varied TDG levels are caused by the varied flow of flood water during the spill season. Fish may alternatingly experience intermittent TDG exposure from equilibrated water and TDG-supersaturated water. However, little research on the effects of intermittent TDG exposure on fish has been conducted. To evaluate the tolerance of fish to continuous acute TDG exposure, juvenile yellow catfish living in the shallows were exposed to TDG-supersaturated water at 125%, 130%, 135% and 140% TDG for 96 h. The results showed that the juvenile yellow catfish exhibited obvious gas bubble disease (GBD) and abnormal behaviours (e.g., exophthalmos and bubbles on fins). The survival probability declined with the arising TDG levels. The median survival time (ST50) of yellow catfish was 8.57, 18.1, 33.86 and 58.84 h at above TDG levels, respectively. To further investigate the effects of intermittent TDG exposure on juvenile yellow catfish, the fish were subjected to varied TDG levels (125%, 130%, 135% and 140%) for a specific duration (3 h and 6 h) and then underwent a period of recovery (3, 6 and 9 h) in equilibrated water. The results showed that an increase in recovery time (or decreasing exposure time) can prolong the survival time of yellow catfish and improve their survival probability at the same exposure time (or same recovery time). Compared with that under continuous acute exposure, the ST50 of juvenile yellow catfish increased significantly with intermittent exposure. Intermittent exposure can enhance the tolerance of juvenile yellow catfish to TDG. The application of the results may contribute to the protection of aquatic organisms and the formulation of the scheme of reservoir operation in the Yangtze River.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Bagres/fisiología , Gases/toxicidad , Ríos/química , Contaminantes del Agua/toxicidad , Animales , Conducta Animal/efectos de los fármacos , China , Gases/análisis , Probabilidad , Análisis de Supervivencia , Movimientos del Agua , Contaminantes del Agua/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda