Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Eur J Immunol ; 53(10): e2350452, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565654

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) causes a chronic demyelinating disease similar to multiple sclerosis in mice. Although sialic acids have been shown to be essential for TMEV attachment to the host, the surface receptor has not been identified. While type I interferons play a pivotal role in the elimination of the chronic infectious Daniel (DA) strain, the role of plasmacytoid dendritic cells (pDCs) is controversial. We herein found that TMEV binds to conventional DCs but not to pDCs. A glycomics analysis showed that the sialylated N-glycan fractions were lower in pDCs than in conventional DCs, indicating that pDCs are not susceptible to TMEV infection due to the low levels of sialic acid. TMEV capsid proteins contain an integrin recognition motif, and dot blot assays showed that the integrin proteins bind to TMEV and that the viral binding was reduced in the desialylated αX ß2 . αX ß2 protein suppressed TMEV replication in vivo, and TMEV co-localized with integrin αM at the cell membrane and TLR 3 in the cytoplasm, suggesting that αM serves as the viral attachment and entry. These results show that the chronic encephalomyelitis virus utilizes sialylated integrins as cell surface receptors, leading to cellular tropism to evade pDC activation.


Asunto(s)
Encefalomielitis , Integrinas , Ratones , Animales , Receptores de Superficie Celular , Células Dendríticas , Tropismo
2.
J Neurosci Res ; 101(8): 1259-1274, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001997

RESUMEN

Given that multiple sclerosis (MS) is a complex disease with an unclear etiology, a single animal model is unlikely to accurately represent all aspects of pathology and clinical features of the human condition. However, the availability of three major types of murine models of MS, that is, experimental autoimmune encephalomyelitis (EAE), viral models, and toxic models, enables studies of several relevant features of this debilitating disease. Researchers have recently begun to combine magnetic resonance imaging (MRI) technologies with other experimental strategies to acquire complementary information, for example, anatomical and functional, and study the effect of experimental manipulations longitudinally in a noninvasive way. This review summarizes the latest MRI studies investigating critical aspects of MS, such as atrophy, demyelination, neuroaxonal damage, and neuroinflammation, in mouse models of MS. Advanced techniques will be briefly discussed, providing references to specialized literature for the readers. Thus, this review aims to describe different imaging protocols used to study critical aspects of MS in a research laboratory, discussing the main related findings in the most significant murine models of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Humanos , Animales , Esclerosis Múltiple/etiología , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Atrofia
3.
BMC Med Imaging ; 23(1): 183, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957588

RESUMEN

BACKGROUND: There is a lack of understanding of the mechanisms by which the CNS is injured in multiple sclerosis (MS). Since Theiler's murine encephalomyelitis virus (TMEV) infection in SJL/J mice is an established model of progressive disability in MS, and CNS atrophy correlates with progressive disability in MS, we used in vivo MRI to quantify total ventricular volume in TMEV infection. We then sought to identify immunological and virological biomarkers that correlated with increased ventricular size. METHODS: Mice, both infected and control, were followed for 6 months. Cerebral ventricular volumes were determined by MRI, and disability was assessed by Rotarod. A range of immunological and virological measures was obtained using standard techniques. RESULTS: Disability was present in infected mice with enlarged ventricles, while infected mice without enlarged ventricles had Rotarod performance similar to sham mice. Ventricular enlargement was detected as soon as 1 month after infection. None of the immunological and virological measures correlated with the development of ventricular enlargement. CONCLUSIONS: These results support TMEV infection with brain MRI monitoring as a useful model for exploring the biology of disability progression in MS, but they did not identify an immunological or virological correlate with ventricular enlargement.


Asunto(s)
Esclerosis Múltiple , Ratones , Animales , Encéfalo/patología , Imagen por Resonancia Magnética , Atrofia/diagnóstico por imagen , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769167

RESUMEN

Neurological dysfunction following viral infection varies among individuals, largely due to differences in their genetic backgrounds. Gait patterns, which can be evaluated using measures of coordination, balance, posture, muscle function, step-to-step variability, and other factors, are also influenced by genetic background. Accordingly, to some extent gait can be characteristic of an individual, even prior to changes in neurological function. Because neuromuscular aspects of gait are under a certain degree of genetic control, the hypothesis tested was that gait parameters could be predictive of neuromuscular dysfunction following viral infection. The Collaborative Cross (CC) mouse resource was utilized to model genetically diverse populations and the DigiGait treadmill system used to provide quantitative and objective measurements of 131 gait parameters in 142 mice from 23 CC and SJL/J strains. DigiGait measurements were taken prior to infection with the neurotropic virus Theiler's Murine Encephalomyelitis Virus (TMEV). Neurological phenotypes were recorded over 90 days post-infection (d.p.i.), and the cumulative frequency of the observation of these phenotypes was statistically associated with discrete baseline DigiGait measurements. These associations represented spatial and postural aspects of gait influenced by the 90 d.p.i. phenotype score. Furthermore, associations were found between these gait parameters with sex and outcomes considered to show resistance, resilience, or susceptibility to severe neurological symptoms after long-term infection. For example, higher pre-infection measurement values for the Paw Drag parameter corresponded with greater disease severity at 90 d.p.i. Quantitative trait loci significantly associated with these DigiGait parameters revealed potential relationships between 28 differentially expressed genes (DEGs) and different aspects of gait influenced by viral infection. Thus, these potential candidate genes and genetic variations may be predictive of long-term neurological dysfunction. Overall, these findings demonstrate the predictive/prognostic value of quantitative and objective pre-infection DigiGait measurements for viral-induced neuromuscular dysfunction.


Asunto(s)
Theilovirus , Virosis , Ratones , Animales , Virosis/genética , Ratones Endogámicos , Sitios de Carácter Cuantitativo , Marcha
5.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37629171

RESUMEN

Siponimod (Sp) is a Sphingosine 1-phosphate (S1P) receptor modulator, and it suppresses S1P- mediated autoimmune lymphocyte transport and inflammation. Theiler's murine encephalomyelitis virus (TMEV) infection mouse model of multiple sclerosis (MS) exhibits inflammation-driven acute and chronic phases, spinal cord lesions, brain and spinal cord atrophy, and white matter injury. The objective of the study was to investigate whether Sp treatment could attenuate inflammation-induced pathology in the TMEV model by inhibiting microglial activation and preventing the atrophy of central nervous tissue associated with neurodegeneration. Clinical disability score (CDS), body weight (BW), and rotarod retention time measures were used to assess Sp's impact on neurodegeneration and disease progression in 4 study groups of 102 animals, including 44 Sp-treated (SpT), 44 vehicle-treated, 6 saline-injected, and 8 age-matched healthy controls (HC). Next, 58 (22 SpT, 22 vehicle, 6 saline injected, and 8 HC) out of the 102 animals were further evaluated to assess the effect of Sp on brain region-specific and spinal cord volume changes, as well as microglial activation. Sp increased CDS and decreased BW and rotarod retention time in TMEV mice, but did not significantly affect most brain region volumes, except for lateral ventricle volume. Sp suppressed ventricular enlargement, suggesting reduced TMEV-induced inflammation in LV. No significant differences in spine volume changes were observed between Sp- and vehicle-treated animals, but there were differences between HC and TMEV groups, indicating TMEV-induced inflammation contributed to increased spine volume. Spine histology revealed no significant microglial density differences between groups in gray matter, but HC animals had higher type 1 morphology and lower type 2 morphology percentages in gray and white matter regions. This suggests that Sp did not significantly affect microglial density but may have modulated neuroinflammation in the spinal cord. Sp may have some effects on neuroinflammation and ventricular enlargement. However, it did not demonstrate a significant impact on neurodegeneration, spinal volume, or lesion volume in the TMEV mouse model. Further investigation is required to fully understand Sp's effect on microglial activation and its relevance to the pathophysiology of MS. The differences between the current study and previous research using other MS models, such as EAE, highlight the differences in pathological processes in these two disease models.


Asunto(s)
Enfermedades Desmielinizantes , Theilovirus , Animales , Ratones , Enfermedades Neuroinflamatorias , Encéfalo/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Atrofia , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430856

RESUMEN

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune and degenerative disease with axonal damage and demyelination as its main features. Its dual neurological and autoimmune nature makes it a disease that is difficult to treat. Treatments that simultaneously stop the immune response while protecting and repairing the nervous system are urgent. That is of utmost importance for the primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS, characterized by worsening neurological function from the onset of symptoms. In this sense, inhibitors of glycogen synthase kinase 3ß (GSK3ß) and phosphodiesterase 7 (PDE7) have recently shown great therapeutic potential for the treatment of demyelinating diseases. Here we investigated a dual inhibitor of these two targets, the small molecule VP3.15, in a preclinical model, which resembles primary-progressive MS (PPMS), the Theiler's mouse encephalomyelitis virus-induced demyelinated disease (TMEV-IDD). In our study, VP3.15 ameliorates the disease course improving motor deficits of infected mice. Chronic treatment with VP3.15 also showed significant efficacy in the immunomodulation process, as well as in the proliferation and differentiation of oligodendroglial precursors, improving the preservation of myelin and axonal integrity. Therefore, our results support a treatment with the safe VP3.15 as an integrative therapeutic strategy for the treatment of PPMS.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Theilovirus , Animales , Ratones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7 , Esclerosis Múltiple/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142395

RESUMEN

A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.


Asunto(s)
Theilovirus , Animales , Antecedentes Genéticos , Ratones , Enfermedades Neuroinflamatorias , ARN , ARN Mensajero , Theilovirus/genética
8.
Biochem Biophys Res Commun ; 585: 162-168, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34808499

RESUMEN

tRNase ZS (ELAC1) and TRNT1 function in tRNA recycling. Recently, we have shown that these genes are upregulated in the cells infected with Theiler's mouse encephalitis virus (TMEV), implying that tRNA recycling functions in response to viral infection. To address the molecular mechanism underlying the ELAC1 upregulation in the cells infected with TMEV, we performed luciferase assays using various plasmid constructs harboring the ELAC1 promoter region. The luciferase expression from a construct containing the full-length ELAC1 promoter was augmented by TMEV, poly IC, IFN-ß, or IFN-γ. We identified four IFN-stimulated responsible elements (ISREs) in the proximal promoter region. The luciferase expression from the constructs that lack all the ISREs was strongly reduced compared with that from the constructs with the four ISREs in the presence of IFN-ß or IFN-γ. The observation that the ISREs from the ELAC1 promoter are essential for the gene upregulation by IFN-ß or IFN-γ suggests that the ELAC1 gene is upregulated by IFNs.


Asunto(s)
Interferones/farmacología , Regiones Promotoras Genéticas/genética , ARN de Transferencia/genética , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos , Antivirales/farmacología , Secuencia de Bases , Células HeLa , Humanos , Interferón beta/farmacología , Interferón gamma/farmacología , ARN de Transferencia/metabolismo , Elementos de Respuesta/genética , Theilovirus/efectos de los fármacos , Theilovirus/fisiología , Regulación hacia Arriba/genética
9.
Epilepsia ; 62(8): 1829-1841, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34212377

RESUMEN

OBJECTIVE: A growing body of evidence indicates a potential role for the gut-brain axis as a novel therapeutic target in treating seizures. The present study sought to characterize the gut microbiome in Theiler murine encephalomyelitis virus (TMEV)-induced seizures, and to evaluate the effect of microbial metabolite S-equol on neuronal physiology as well as TMEV-induced neuronal hyperexcitability ex vivo. METHODS: We infected C57BL/6J mice with TMEV and monitored the development of acute behavioral seizures 0-7 days postinfection (dpi). Fecal samples were collected at 5-7 dpi and processed for 16S sequencing, and bioinformatics were performed with QIIME2. Finally, we conducted whole-cell patch-clamp recordings in cortical neurons to investigate the effect of exogenous S-equol on cell intrinsic properties and neuronal hyperexcitability. RESULTS: We demonstrated that gut microbiota diversity is significantly altered in TMEV-infected mice at 5-7 dpi, exhibiting separation in beta diversity in TMEV-infected mice dependent on seizure phenotype, and lower abundance of genus Allobaculum in TMEV-infected mice regardless of seizure phenotype. In contrast, we identified specific loss of S-equol-producing genus Adlercreutzia as a microbial hallmark of seizure phenotype following TMEV infection. Electrophysiological recordings indicated that exogenous S-equol alters cortical neuronal physiology. We found that entorhinal cortex neurons are hyperexcitable in TMEV-infected mice, and exogenous application of microbial-derived S-equol ameliorated this TMEV-induced hyperexcitability. SIGNIFICANCE: Our study presents the first evidence of microbial-derived metabolite S-equol as a potential mechanism for alteration of TMEV-induced neuronal excitability. These findings provide new insight for the novel role of S-equol and the gut-brain axis in epilepsy treatment.


Asunto(s)
Convulsiones , Theilovirus , Animales , Eje Cerebro-Intestino , Corteza Entorrinal , Equol , Ratones , Ratones Endogámicos C57BL , Neuronas , Convulsiones/tratamiento farmacológico , Convulsiones/etiología
10.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768809

RESUMEN

Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.


Asunto(s)
Infecciones por Cardiovirus/genética , Regulación de la Expresión Génica , Hipocampo/metabolismo , Médula Espinal/metabolismo , Theilovirus , Animales , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Masculino , Ratones , Análisis de Secuencia de ARN
11.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445189

RESUMEN

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Asunto(s)
Antagonistas de Estrógenos/efectos adversos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Tamoxifeno/efectos adversos , Animales , Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/veterinaria , Muerte Celular/efectos de los fármacos , Proteína Doblecortina , Hipocampo/patología , Ratones Endogámicos C57BL , Neuronas/patología , Theilovirus/fisiología
12.
J Neuroinflammation ; 17(1): 307, 2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33069239

RESUMEN

BACKGROUND: Experimental autoimmune encephalitis (EAE) and virally induced demyelinating disease are two major experimental model systems used to study human multiple sclerosis. Although endothelin-1 level elevation was previously observed in the CNS of mice with EAE and viral demyelinating disease, the potential role of endothelin-1 in the development of these demyelinating diseases is unknown. METHODS AND RESULTS: In this study, the involvement of endothelin-1 in the development and progression of demyelinating diseases was investigated using these two experimental models. Administration of endothelin-1 significantly promoted the progression of both experimental diseases accompanied with elevated inflammatory T cell responses. In contrast, administration of specific endothelin-1 inhibitors (BQ610 and BQ788) significantly inhibited progression of these diseases accompanied with reduced T cell responses to the respective antigens. CONCLUSIONS: These results strongly suggest that the level of endothelin-1 plays an important role in the pathogenesis of immune-mediated CNS demyelinating diseases by promoting immune responses.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Enfermedades Desmielinizantes/metabolismo , Endotelina-1/biosíntesis , Theilovirus , Animales , Infecciones por Cardiovirus/inducido químicamente , Infecciones por Cardiovirus/inmunología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/inmunología , Endotelina-1/antagonistas & inhibidores , Endotelina-1/toxicidad , Femenino , Ratones , Oligopéptidos/farmacología , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
J Neuroinflammation ; 17(1): 369, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272299

RESUMEN

BACKGROUND: Neuron-glial antigen 2 (NG2) cells are a glial cell type tiled throughout the gray and white matter of the central nervous system (CNS). NG2 cells are known for their ability to differentiate into oligodendrocytes and are commonly referred to as oligodendrocyte precursor cells. However, recent investigations have begun to identify additional functions of NG2 cells in CNS health and pathology. NG2 cells form physical and functional connections with neurons and other glial cell types throughout the CNS, allowing them to monitor and respond to the neural environment. Growing evidence indicates that NG2 cells become reactive under pathological conditions, though their specific roles are only beginning to be elucidated. While reactive microglia and astrocytes are well-established contributors to neuroinflammation and the development of epilepsy following CNS infection, the dynamics of NG2 cells remain unclear. Therefore, we investigated NG2 cell reactivity in a viral-induced mouse model of temporal lobe epilepsy. METHODS: C57BL6/J mice were injected intracortically with Theiler's murine encephalomyelitis virus (TMEV) or PBS. Mice were graded twice daily for seizures between 3 and 7 days post-injection (dpi). At 4 and 14 dpi, brains were fixed and stained for NG2, the microglia/macrophage marker IBA1, and the proliferation marker Ki-67. Confocal z stacks were acquired in both the hippocampus and the overlying cortex. Total field areas stained by each cell marker and total field area of colocalized pixels between NG2 and Ki67 were compared between groups. RESULTS: Both NG2 cells and microglia/macrophages displayed increased immunoreactivity and reactive morphologies in the hippocampus of TMEV-injected mice. While increased immunoreactivity for IBA1 was also present in the cortex, there was no significant change in NG2 immunoreactivity in the cortex following TMEV infection. Colocalization analysis for NG2 and Ki-67 revealed a significant increase in overlap between NG2 and Ki-67 in the hippocampus of TMEV-injected mice at both time points, but no significant differences in cortex. CONCLUSIONS: NG2 cells acquire a reactive phenotype and proliferate in response to TMEV infection. These results suggest that NG2 cells alter their function in response to viral encephalopathy, making them potential targets to prevent the development of epilepsy following viral infection.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Células Precursoras de Oligodendrocitos/patología , Animales , Infecciones por Cardiovirus , Proliferación Celular , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/virología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Theilovirus
14.
J Neuroinflammation ; 16(1): 109, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118079

RESUMEN

BACKGROUND: The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation. The molecular and cellular features differentiating the two patterns are still unclear, and the role of inflammation during progressive disease is a subject of active debate. METHODS: We performed a comprehensive analysis of the intrathecal inflammation in two clinically distinct mouse models of MS: the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Microarray technology was first used to examine global gene expression changes in the spinal cord. Inflammation in the spinal cord was further assessed by immunohistochemical image analysis and flow cytometry. Levels of serum and cerebrospinal fluid (CSF) immunoglobulin (Ig) isotypes and chemokines were quantitated using Luminex Multiplex technology, whereas a capture ELISA was used to measure serum and CSF albumin levels. Finally, an intrathecal Ig synthesis index was established with the ratio of CSF and serum test results corrected as a ratio of their albumin concentrations. RESULTS: Microarray analysis identified an enrichment of B cell- and Ig-related genes upregulated in TMEV-IDD mice. We also demonstrated an increased level of intrathecal Ig synthesis as well as a marked infiltration of late differentiated B cells, including antibody secreting cells (ASC), in the spinal cord of TMEV-IDD, but not R-EAE mice. An intact blood-brain barrier in TMEV-IDD mice along with higher CSF levels of CXCL13, CXCL12, and CCL19 provides evidence for an intrathecal synthesis of chemokines mediating B cell localization to the central nervous system (CNS). CONCLUSIONS: Overall, these findings, showing increased concentrations of intrathecally produced Igs, substantial infiltration of ASC, and the presence of B cell supporting chemokines in the CNS of TMEV-IDD mice, but not R-EAE mice, suggest a potentially important role for Igs and ASC in the chronic progressive phase of demyelinating diseases.


Asunto(s)
Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Médula Espinal/inmunología , Theilovirus/inmunología , Animales , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Esclerosis Múltiple/patología , Médula Espinal/patología
15.
J Neuroinflammation ; 16(1): 152, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31325960

RESUMEN

BACKGROUND: In the healthy central nervous system (CNS), microglia are found in a homeostatic state and peripheral macrophages are absent from the brain. Microglia play key roles in maintaining CNS homeostasis and acting as first responders to infection and inflammation, and peripheral macrophages infiltrate the CNS during neuroinflammation. Due to their distinct origins and functions, discrimination between these cell populations is essential to the comprehension of neuroinflammatory disorders. Studies comparing the gene profiles of microglia and peripheral macrophages, or macrophages in vitro-derived from bone marrow, under non-infectious conditions of the CNS, have revealed valuable microglial-specific genes. However, studies comparing gene profiles between CNS-infiltrating macrophages and microglia, when both are isolated from the CNS during viral-induced neuroinflammation, are lacking. METHODS: We isolated, via flow cytometry, microglia and infiltrating macrophages from the brains of Theiler's murine encephalomyelitis virus-infected C57BL/6 J mice and used RNA-Seq, followed by validation with qPCR, to examine the differential transcriptional profiles of these cells. We utilized primary literature defining subcellular localization to determine whether or not particular proteins extracted from the transcriptional profiles were expressed at the cell surface. The surface expression and cellular specificity of triggering receptor expressed on myeloid cells 1 (TREM-1) protein were examined via flow cytometry. We also examined the immune response gene profile within the transcriptional profiles of these isolated microglia and infiltrating macrophages. RESULTS: We have identified and validated new microglial- and macrophage-specific genes, encoding cell surface proteins, expressed at the peak of neuroinflammation. TREM-1 protein was confirmed to be expressed by infiltrating macrophages, not microglia, at the peak of neuroinflammation. We also identified both unique and redundant immune functions, through examination of the immune response gene profiles, of microglia and infiltrating macrophages during neurotropic viral infection. CONCLUSIONS: The differential expression of cell surface-specific genes during neuroinflammation can potentially be used to discriminate between microglia and macrophages as well as provide a resource that can be further utilized to target and manipulate specific cell responses during neuroinflammation.


Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Microglía/inmunología , Animales , Infecciones por Cardiovirus/inmunología , Ratones , Ratones Endogámicos C57BL , Theilovirus/inmunología , Transcripción Genética , Transcriptoma
16.
Brain Behav Immun ; 77: 110-126, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30582962

RESUMEN

Remyelination is an endogenous process by which functional recovery of damaged neurons is achieved by reinstating the myelin sheath around axons. Remyelination has been documented in multiple sclerosis (MS) lesions and experimental models, although it is often incomplete or fails to affect the integrity of the axon, thereby leading to progressive disability. Microglia play a crucial role in the clearance of the myelin debris produced by demyelination and in inflammation-dependent OPC activation, two processes necessary for remyelination to occur. We show here that following corpus callosum demyelination in the TMEV-IDD viral murine model of MS, there is spontaneous and partial remyelination that involves a temporal discordance between OPC mobilization and microglia activation. Pharmacological treatment with the endocannabinoid 2-AG enhances the clearance of myelin debris by microglia and OPC differentiation, resulting in complete remyelination and a thickening of the myelin sheath. These results highlight the importance of targeting microglia during the repair processes in order to enhance remyelination.


Asunto(s)
Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Microglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Animales , Ácidos Araquidónicos/metabolismo , Axones/metabolismo , Diferenciación Celular/fisiología , Cuerpo Calloso/patología , Cuerpo Calloso/fisiología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Femenino , Glicéridos/metabolismo , Masculino , Ratones , Ratones Endogámicos , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/metabolismo , Theilovirus/patogenicidad
17.
J Neurosci ; 37(35): 8385-8398, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28751457

RESUMEN

The failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease. Treatment with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-AG degradation in the mouse CNS, modulates neuroinflammation and reduces CSPGs accumulation and astrogliosis around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. Inhibition of 2-AG hydrolysis augments the number of mature oligodendrocytes and increases MBP, leading to remyelination and functional recovery of mice. Our findings establish a mechanism for 2-AG promotion of remyelination with implications in axonal repair in CNS demyelinating pathologies.SIGNIFICANCE STATEMENT The deposition of chondroitin sulfate proteoglycans contributes to the failure in remyelination associated with multiple sclerosis. Here we unveil a new role for 2-arachidonoylglycerol, the major CNS endocannabinoid, in the modulation of chondroitin sulfate proteoglycan accumulation in Theiler's murine encephalomyelitis virus-induced demyelinating disease. The treatment during the chronic phase with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-arachidonoylglycerol degradation in the mouse CNS, modulates neuroinflammation and reduces chondroitin sulfate proteoglycan deposition around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. The increased 2-arachidonoylglycerol tone promotes remyelination in a model of progressive multiple sclerosis ameliorating motor dysfunction.


Asunto(s)
Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/uso terapéutico , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Glicéridos/farmacología , Glicéridos/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Proteoglicanos/metabolismo , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Femenino , Ratones , Esclerosis Múltiple/patología , Neurogénesis/efectos de los fármacos
18.
Glia ; 66(7): 1447-1463, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29484707

RESUMEN

The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking. 2-AG or the inhibition of its hydrolysis diminished the reactivity and number of microglia at the TMEV injection site reducing their morphological complexity and modulating them towards an anti-inflammatory state via CB2 receptors. Indeed, 2-AG dampened the infiltration of immune cells into the CNS and inhibited their egress from the spleen, resulting in long-term beneficial effects at the chronic phase of the disease. Intriguingly, it is not a generalized action over leukocytes since 2-AG increased the presence and suppressive potency of myeloid derived suppressor cells (MDSCs) in the brain resulting in higher apoptotic CD4+ T cells at the injection site. Together, these data suggest a robust modulatory effect in the peripheral and central immunity by 2-AG and highlight the interest of modulating endogenous cannabinoids to regulate CNS inflammatory conditions.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Infecciones por Cardiovirus/inmunología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Inflamación/inmunología , Microglía/inmunología , Theilovirus , Animales , Ácidos Araquidónicos/administración & dosificación , Encéfalo/inmunología , Encéfalo/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Infecciones por Cardiovirus/patología , Modelos Animales de Enfermedad , Endocannabinoides/administración & dosificación , Femenino , Glicéridos/administración & dosificación , Inmunidad Innata/inmunología , Inflamación/patología , Ratones , Microglía/patología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo
19.
FASEB J ; 31(6): 2267-2275, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28188174

RESUMEN

Brain atrophy is a common feature of numerous neurologic diseases in which the role of neuroinflammation remains ill-defined. In this study, we evaluated the contribution of major histocompatibility complex class I molecules to brain atrophy in Theiler's murine encephalomyelitis virus (TMEV)-infected transgenic FVB mice that express the Db class I molecule. FVB/Db and wild-type FVB mice were evaluated for changes in neuroinflammation, virus clearance, neuropathology, and development of brain atrophy via T2-weighted MRI and subsequent 3-dimensional volumetric analysis. Significant brain atrophy and hippocampal neuronal loss were observed in TMEV-infected FVB/Db mice, but not in wild-type FVB mice. Brain atrophy was observed at 1 mo postinfection and persisted through the 4-mo observation period. Of importance, virus-infected FVB/Db mice elicited a strong CD8 T-cell response toward the immunodominant Db-restricted TMEV-derived peptide, VP2121-130, and cleared TMEV from the CNS. In addition, immunofluorescence revealed CD8 T cells near virus-infected neurons; therefore, we hypothesize that class I restricted CD8 T-cell responses promote development of brain atrophy. This model provides an opportunity to analyze the contribution of immune cells to brain atrophy in a system where persistent virus infection and demyelination are not factors in long-term neuropathology.-Huseby Kelcher, A. M., Atanga, P. A., Gamez, J. D., Cumba Garcia, L. M., Teclaw, S. J., Pavelko, K. D., Macura, S. I., Johnson. A. J. Brain atrophy in picornavirus-infected FVB mice is dependent on the H-2Db class I molecule.


Asunto(s)
Encefalopatías/virología , Encéfalo/patología , Genes MHC Clase I/genética , Infecciones por Picornaviridae/patología , Theilovirus , Animales , Atrofia , Encéfalo/virología , Linfocitos T CD8-positivos/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos , Ratones Transgénicos , Neuronas/virología , Infecciones por Picornaviridae/inmunología , Carga Viral
20.
Epilepsy Behav ; 88: 189-204, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30292054

RESUMEN

Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus (TMEV) replicates many features of viral encephalitis-induced epilepsy in humans, including neuroinflammation, early (insult-associated) and late (spontaneous) seizures, neurodegeneration in the hippocampus, and cognitive and behavioral alterations. Thus, this model may be ideally suited to study mechanisms involved in encephalitis-induced epilepsy as potential targets for epilepsy prevention. However, spontaneous recurrent seizures (SRS) occur too infrequently to be useful as a biomarker of epilepsy, e.g., for drug studies. This prompted us to evaluate whether epileptiform spikes or spike clusters in the cortical electroencephalogram (EEG) may be a useful surrogate of epilepsy in this model. For this purpose, we developed an algorithm that allows efficient and large-scale EEG analysis of early and late seizures, spikes, and spike clusters in the EEG. While 77% of the infected mice exhibited early seizures, late seizures were only observed in 33% of the animals. The clinical characteristics of early and late seizures did not differ except that late generalized convulsive (stage 5) seizures were significantly longer than early stage 5 seizures. Furthermore, the frequency of SRS was much lower than the frequency of early seizures. Continuous (24/7) video-EEG monitoring over several months following infection indicated that the latent period to onset of SRS was 61 (range 16-91) days. Spike and spike clusters were significantly more frequent in infected mice with late seizures than in infected mice without seizures or in mock-infected sham controls. Based on the results of this study, increases in EEG spikes and spike clusters in groups of infected mice may be used as a new readout for studies on antiepileptogenic or disease-modifying drug effects in this model, because the significant increase in average spike counts in mice with late seizures obviously indicates a proepileptogenic alteration.


Asunto(s)
Electroencefalografía , Encefalitis Viral/complicaciones , Epilepsia/diagnóstico , Convulsiones/diagnóstico , Theilovirus , Algoritmos , Animales , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Epilepsia/virología , Femenino , Ratones , Ratones Endogámicos C57BL , Convulsiones/fisiopatología , Convulsiones/virología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda