Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Monit Assess ; 190(10): 599, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30238229

RESUMEN

East Lake is a shallow lake (in Wuhan, China) where cyanobacteria blooms occurred frequently from 1970 to 1985. During the study period, all Carlson trophic state index values were > 50, indicating that East Lake is in a eutrophic state. In this study, phycocyanin concentrations were measured through phycocyanin fluorometry for rapid assessment of cyanobacterial abundance. The smoothing splines of the optimal generalized additive model (GAM) indicated that Secchi depth (SD), total phosphorus (TP) and dissolved oxygen (DO) concentrations, electrical conductivity (EC), chemical oxygen demand (COD), and ratios of total nitrogen (TN) to TP (TN:TP) were the main environmental factors in a moderate nonlinear relationship with cyanobacterial phycocyanin concentrations in East Lake. The shape of the GAM smoother can be used to quantify the relationship between a response variable and an explanatory variable in the scatterplot. Phycocyanin concentrations were sharply and negatively related to both SD and EC when the SD was 20-80 cm and EC was > 270 mg/L. Phycocyanin concentrations increased with concentrations of TP, DO, and COD. Phycocyanin concentrations increased sharply with TP concentrations when TP concentrations were > 0.10 mg/L and approached to a constant when DO concentrations were > 8.20 mg/L. Approximately, 85% of the phycocyanin concentrations were negatively correlated with TN:TP of < 26. In summary, organic compounds and TP were inferred to the key factors limiting the potential growth of cyanobacteria in East Lake. These change points/thresholds of smoothing splines of aforementioned variables may serve as a framework for managing the cyanobacterial growth.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Modelos Estadísticos , Ficocianina/análisis , China , Cianobacterias/aislamiento & purificación , Monitoreo del Ambiente , Eutrofización , Fluorescencia , Fluorometría , Lagos/química , Nitrógeno/análisis , Fósforo/análisis
2.
Water Res ; 251: 121099, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184914

RESUMEN

The escalation of global eutrophication has significantly increased due to the impact of climate change, particularly the increased frequency of extreme rainfall events. Predicting and managing eutrophication requires understanding the consequences of precipitation events on algal dynamics. Here, we assessed the influence of precipitation events throughout the year on nutrient and phytoplankton dynamics in a drinking water reservoir from January 2020 to January 2022. Four distinct precipitation patterns, namely early spring flood rain (THX), Plum rain (MY), Typhoon rain (TF), and Dry season (DS), were identified based on rainfall intensity, duration time, and cumulative rainfall. The study findings indicate that rainfall is the primary driver of algal dynamics by altering nutrient levels and TN:TP ratios during wet seasons, while water temperature becomes more critical during the Dry season. Combining precipitation characteristics with the lag periods between algal proliferation and rainfall occurrence is essential for accurately assessing the impact of rainfall on algal blooms. The highest algae proliferation occurred approximately 20 and 30 days after the peak rainfall during the MY and DS periods, respectively. This was influenced by the intensity and cumulative precipitation. The reservoir exhibited two distinct TN/TP ratio stages, with average values of 52 and 19, respectively. These stages were determined by various forms of nitrogen and phosphorus in rainfall-driven inflows and were associated with shifts from Bacillariophyta-dominated to Cyanophyta-dominated blooms during the MY and DS seasons. Our findings underscore the interconnected effects of nutrients, temperature, and hydrological conditions driven by diverse rainfall patterns in shaping algal dynamics. This study provides valuable insights into forecasting algal bloom risks in the context of climate change and developing sustainable strategies for lake or reservoir restoration.


Asunto(s)
Cianobacterias , Agua Potable , Fitoplancton , Agua Potable/análisis , Eutrofización , Lagos/análisis , Fósforo/análisis , Nutrientes/análisis , China , Monitoreo del Ambiente , Estaciones del Año , Nitrógeno/análisis
3.
Front Plant Sci ; 15: 1390019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689840

RESUMEN

Reservoirs, heavily influenced by artificial management, often harbor phytoplankton assemblages dominated by cyanobacteria or dinoflagellates, triggering significant changes in aquatic ecosystems. However, due to limited sampling frequency and insufficient attention to species composition, the bloom processes and key characteristics of phytoplankton community structure have not been systematically elucidated. During the low-water level period when blooms are most likely to occur (June to September) in a tributary bay of the Three Gorges Reservoir, daily sampling was conducted to investigate phytoplankton community composition, identify significant environmental factors, and evaluate important structure characteristics of phytoplankton community. The results showed that Microcystis aeruginosa maintained a clear dominance for almost a month in stage 1, with low Shannon and evenness but a high dominance index. Phytoplankton total density and biomass decreased drastically in stage 2, but Microcystis aeruginosa still accounted for some proportion. The highest Shannon and evenness but the lowest dominance index occurred in stage 3. Peridiniopsis niei occurred massively in stage 4, but its dominant advantages lasted only one to two days. NH4-N was responsible for the dominance of Microcystis aeruginosa, while TP and PO4-P was responsible for the dominance of Peridiniopsis niei; however, precipitation contributed to their drastic decrease or disappearance to some extent. The TN : TP ratio could be considered as an important indicator to determine whether Microcystis aeruginosa or Peridiniopsis niei dominated the phytoplankton community. Throughout the study period, physiochemical factors explained more variation in phytoplankton data than meteorological and hydrological factors. Pairwise comparisons revealed an increase in average ß diversity with stage progression, with higher ß diversities based on abundance data than those based on presence/absence data. Repl had a greater effect on ß diversity differences based on presence/absence data, whereas RichDiff had a greater effect on ß diversity differences based on species abundance data. Co-occurrence networks for stage 1 showed the most complex structure, followed by stage 4, while the network for stage 3 was relatively sparse, although the overall community division remained compact. This study provides a useful attempt to explore the status and changes in phytoplankton community structure during the bloom process through high-resolution investigation.

4.
Toxins (Basel) ; 14(3)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35324706

RESUMEN

The factors related to cyanotoxin occurrence and its social impact, with comprehension and risk perception being the most important issues, are not yet completely understood in the Cuban context. The objectives of this research were to determine the risk extension and microcystin-LR levels, and to identify the environmental factors that trigger the toxic cyanobacteria growth and microcystin-LR occurrence in 24 water reservoirs in eastern Cuba. Samplings were performed in the early morning hours, with in situ determination and physicochemical analysis carried out in the laboratory. Microcystin-LR were determined in water and within the cells (intracellular toxins) using UPLC-MS analysis after solid phase extraction. The reservoirs studied were found to be affected by eutrophication, with high levels of TN:TP ratio and phytoplankton cell concentrations, high water temperatures and low transparency, which cause collateral effect such as cyanobacterial bloom and microcystin-LR occurrence. In Hatillo, Chalóns, Parada, Mícara, Baraguá, Cautillo, La Yaya, Guisa and Jaibo reservoirs, concentrations of MC-LR higher than the WHO limits for drinking water (1 µg·L-1), were detected.


Asunto(s)
Cianobacterias , Agua Potable , Cromatografía Liquida , Cuba , Agua Potable/análisis , Toxinas Marinas , Microcistinas/análisis , Espectrometría de Masas en Tándem
5.
Environ Sci Pollut Res Int ; 29(58): 87132-87143, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35802334

RESUMEN

Harmful cyanobacterial blooms are increasing in frequency and severity, which makes their toxic secondary metabolites of microcystins (MCs) have been widely studied, especially in their distribution and influence factors in different habitats. However, the distribution of MCs on the early growth stage of harmful cyanobacteria and its influence factors and risks are still largely unknown. Thus, in the present study, two reservoirs (Lutian Reservoir and Lake Haitang) with different trophic status in China have been studied weekly from March to May in 2018, when the cyanobacteria communities were just in the early growth stage, to investigate the variation of MCs concentration and the relationships between MCs and environmental parameters. During the investigation, Lutian Reservoir and Lake Haitang were found to be mesotrophic and light eutrophic, respectively. In Lutian Reservoir, the concentration of EMCs (extracellular MCs) was obviously higher than that of IMCs (intracellular MCs) with a mean value of 0.323 and 0.264 µg/L, respectively. Meanwhile, the concentration of EMCs also fluctuated more sharply than that of IMCs. Congeners of IMC-YR and EMC-LR were respectively dominant in total concentrations of IMCs and EMCs. Unsurprisingly, in Lake Haitang, the concentrations of IMC and EMC were both significantly higher than that in Lutian Reservoir with a mean concentration of 0.482 and 0.472 µg/L, respectively. Differently, the concentration of MC-YR was dominant in both IMCs and EMCs, followed by MC-LR. In correlation analysis, the IMCs were significantly and positively correlated with the density and biomass of phytoplankton phyla and potential MCs-producing cyanobacteria and the parameters of water temperature (WT), nutrients, and organic matters. Similar results were also observed for EMCs. While the different variations of MCs in the two reservoirs might be primarily caused by the differences in WT, nutrients (especially phosphorus), organic matters, and the composition of MCs-producing cyanobacteria. In addition, the coexistence of the dominant species of Pseudoanabaena sp., which can produce a taste-and-odor compound of 2-methylisoborneol (2-MIB), might have a significant impact on the concentration and toxicity of MCs. Our results suggested that the risks posed by MCs at the early growth stage of cyanobacteria should also deserve our attention, especially in mesotrophic water bodies.


Asunto(s)
Cianobacterias , Microcistinas , Microcistinas/metabolismo , Monitoreo del Ambiente/métodos , Lagos/análisis , Agua/análisis
6.
Huan Jing Ke Xue ; 41(12): 5381-5388, 2020 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-33374054

RESUMEN

Based on the seasonal changes in the nitrogen and phosphorus concentrations in Hanfeng Lake from March 2017 to February 2018, the nutrient limitation status was evaluated by the stoichiometric molar ratio of nitrogen and phosphorus. The results showed that the average concentrations of TN, DN, and NO3--N were 1.60, 1.25, and 0.91 mg·L-1 in Hanfeng Lake, respectively. The seasonal changes of those indicators were similar, showing the highest concentration in winter and lowest in summer. NO3--N accounted for TN significantly in the water body, and the concentrations of NH4+-N and NO2--N remained at low levels and changed steadily. The average concentrations of TP, DP, and PO43--P were 0.13, 0.09, and 0.06 mg·L-1, respectively. The changes in the concentrations of TP and DP were similar, showing a trend of increasing in spring and summer, and then decreasing in autumn and winter, while the PO43--P concentration showed the trend of fluctuated decrease. TN/TP varied from 11.07 to 56.02, with an average value of 29.23. TN/TP changed seasonally, with the highest value occurring in winter and the lowest value in summer. The conditions of the water body were conducive to growth and reproduction of algae for most of the time during sampling months. The water body was occasionally nitrogen limited and rarely phosphorus limited. The seasonal variation in TN/TP ratio was affected by several factors such as rainfall runoff, fertilizer use, sewage discharge, and aquatic biological activities. Further, protection strategies were proposed for the improvement of the water body in terms of present water quality characteristics in Hanfeng Lake.

7.
Sci Total Environ ; 609: 1258-1269, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28793396

RESUMEN

The quantitative environmental management of reservoir inflows is challenging due to complex coexistence relationships between water quantity and water quality variables. Taking discharge as a representative water quantity indicator, as well as total nitrogen (TN) and total phosphorus (TP) as water quality indicators for the twin rivers (i.e., the Chaohe and Baihe rivers) which run into the Miyun Reservoir in North China, this study calculated marginal probability distributions of these indicators, and analyzed the joint probability distribution of discharge and TN/TP concentration by applying the Frank copula function. According to an analysis of various scenario combinations of discharge and TN/TP concentration, the quantitative management intervals including the priority control interval, the key attention interval and the daily maintenance interval, were identified. The results were as follows: (a) a fitting degree evaluation indicated that the Pearson-III distribution for the marginal probability distribution of discharge and the lognormal distribution for that of TN/TP concentration were feasible. Additionally, the Frank copula theory was applicable for their joint probability analysis according to the applicability analysis and goodness-of-fit test; (b) regarding to the water quality of the Miyun Reservoir inflows, it is more important to enhance the control of the Chaohe River and the monitoring of TP concentration; and (c) the TN concentration within division values of discharge (i.e., 16.59, 24.14m3/s) was tend to exceed the class III limitation of the Environmental Quality Standard for Surface Water in China, and the concentrations of TN and TP increased as the discharge increased for the two rivers. The quantitative management intervals based on copula analysis is an intuitive and effective solution for comprehensive risk management of reservoir inflows.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda