Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

Publication year range
1.
Cell ; 183(7): 1867-1883.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33248023

RESUMEN

Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.


Asunto(s)
Atresia Biliar/inmunología , Atresia Biliar/terapia , Hígado/inmunología , Animales , Antígenos CD20/metabolismo , Linfocitos B/inmunología , Atresia Biliar/sangre , Atresia Biliar/tratamiento farmacológico , Biopsia , Receptor 1 de Quimiocinas CX3C/metabolismo , Muerte Celular , Línea Celular , Proliferación Celular , Transdiferenciación Celular , Niño , Preescolar , Estudios de Cohortes , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/metabolismo , Lactante , Inflamación/patología , Células Asesinas Naturales/inmunología , Macrófagos del Hígado/patología , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Depleción Linfocítica , Linfopoyesis , Masculino , Ratones Endogámicos BALB C , Fagocitosis , ARN/metabolismo , Rituximab/administración & dosificación , Rituximab/farmacología , Rituximab/uso terapéutico , Rotavirus/fisiología , Análisis de la Célula Individual , Células TH1/inmunología , Células Th17/inmunología
2.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270042

RESUMEN

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino/fisiopatología , Mesodermo/fisiología , Animales , Proliferación Celular , Colitis/genética , Colitis/fisiopatología , Colon/fisiología , Células Epiteliales/metabolismo , Fibroblastos/fisiología , Heterogeneidad Genética , Homeostasis , Humanos , Inflamación , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiología , Intestinos/inmunología , Intestinos/fisiología , Células Madre Mesenquimatosas/fisiología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos , Pericitos , Células RAW 264.7 , Factores de Transcripción SOXD/fisiología , Análisis de la Célula Individual/métodos , Tromboplastina/fisiología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Vía de Señalización Wnt/fisiología
3.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580775

RESUMEN

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Animales , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , Hematopoyesis/fisiología , Mesonefro/embriología , Mesonefro/metabolismo , Mesonefro/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Técnicas de Cocultivo
4.
J Allergy Clin Immunol ; 153(3): 780-792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972740

RESUMEN

BACKGROUND: Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE: We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS: Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS: At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS: Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.


Asunto(s)
Enteritis , Eosinofilia , Esofagitis Eosinofílica , Hipersensibilidad a los Alimentos , Gastritis , Adulto , Humanos , Mucosa Esofágica , Alérgenos , Hipersensibilidad a los Alimentos/genética , Perfilación de la Expresión Génica
5.
J Neurochem ; 168(6): 1030-1044, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38344886

RESUMEN

In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Progresión de la Enfermedad , Ferroptosis/fisiología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Microglía/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
6.
J Transl Med ; 22(1): 340, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594779

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS: In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS: This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS: Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Bioensayo , Bases de Datos Factuales , Ferroptosis/genética , Neoplasias Pulmonares/genética , Ligando RANK
7.
J Transl Med ; 22(1): 698, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075394

RESUMEN

BACKGROUND: Severe COVID-19 infection has been associated with the development of pulmonary fibrosis, a condition that significantly affects patient prognosis. Understanding the underlying cellular communication mechanisms contributing to this fibrotic process is crucial. OBJECTIVE: In this study, we aimed to investigate the role of the TNFSF12-TNFRSF12A pathway in mediating communication between alveolar macrophages and fibroblasts, and its implications for the development of pulmonary fibrosis in severe COVID-19 patients. METHODS: We conducted single-cell RNA sequencing (scRNA-seq) analysis using lung tissue samples from severe COVID-19 patients and healthy controls. The data was processed, analyzed, and cell types were annotated. We focused on the communication between alveolar macrophages and fibroblasts and identified key signaling pathways. In vitro experiments were performed to validate our findings, including the impact of TNFRSF12A silencing on fibrosis reversal. RESULTS: Our analysis revealed that in severe COVID-19 patients, alveolar macrophages communicate with fibroblasts primarily through the TNFSF12-TNFRSF12A pathway. This communication pathway promotes fibroblast proliferation and expression of fibrotic factors. Importantly, silencing TNFRSF12A effectively reversed the pro-proliferative and pro-fibrotic effects of alveolar macrophages. CONCLUSION: The TNFSF12-TNFRSF12A pathway plays a central role in alveolar macrophage-fibroblast communication and contributes to pulmonary fibrosis in severe COVID-19 patients. Silencing TNFRSF12A represents a potential therapeutic strategy for mitigating fibrosis in severe COVID-19 lung disease.


Asunto(s)
COVID-19 , Fibroblastos , Macrófagos Alveolares , Fibrosis Pulmonar , Transducción de Señal , Receptor de TWEAK , Humanos , COVID-19/complicaciones , COVID-19/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/complicaciones , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Citocina TWEAK/metabolismo , Comunicación Celular , Masculino , SARS-CoV-2 , Femenino , Persona de Mediana Edad , Proliferación Celular , Pulmón/patología , Índice de Severidad de la Enfermedad
8.
IUBMB Life ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012196

RESUMEN

Osteoporosis (OP) is a systemic metabolic bone disease resulting in reduced bone strength and increased susceptibility to fractures, making it a significant public health and economic problem worldwide. The clinical use of anti-osteoporosis agents is limited because of their serious side effects or the high cost of long-term use. The Xianlinggubao (XLGB) formula is an effective traditional Chinese herbal medicine commonly used in orthopedics to treat osteoporosis; however, its mechanism of action remains unclear. In this study, we screened 40 small RNAs derived from XLGB capsules and found that XLGB28-sRNA targeting TNFSF11 exerted a significant anti-osteoporosis effect in vitro and in vivo by simultaneously promoting osteogenesis and inhibiting osteoclastogenesis. Oral administration of bencaosome [16:0 Lyso PA+XLGB28-sRNA] effectively improved bone mineral density and reduced the damage to the bone microstructure in mice. These results suggest that XLGB28-sRNA may be a novel oligonucleotide drug that promotes osteogenesis and inhibits osteoclastogenesis in mice.

9.
J Autoimmun ; 142: 103137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064919

RESUMEN

BACKGROUND: Environmental factors can influence epigenetic regulation, including DNA methylation, potentially contributing to systemic lupus erythematosus (SLE) development and progression. We compared methylation of the B cell costimulatory CD70 gene, in persons with lupus and controls, and characterized associations with age. RESULTS: In 297 adults with SLE and 92 controls from the Michigan Lupus Epidemiology and Surveillance (MILES) Cohort, average CD70 methylation of CD4+ T cell DNA across 10 CpG sites based on pyrosequencing of the promoter region was higher for persons with SLE compared to controls, accounting for covariates [ß = 2.3, p = 0.011]. Using Infinium MethylationEPIC array data at 18 CD70-annoted loci (CD4+ and CD8+ T cell DNA), sites within the promoter region tended to be hypomethylated in SLE, while those within the gene region were hypermethylated. In SLE but not controls, age was significantly associated with pyrosequencing-based CD70 methylation: for every year increase in age, methylation increased by 0.14 percentage points in SLE, accounting for covariates. Also within SLE, CD70 methylation approached a significantly higher level in Black persons compared to White persons (ß = 1.8, p = 0.051). CONCLUSIONS: We describe altered CD70 methylation patterns in T lymphocyte subsets in adults with SLE relative to controls, and report associations particular to SLE between methylation of this immune-relevant gene and both age and race, possibly a consequence of "weathering" or accelerated aging which may have implications for SLE pathogenesis and potential intervention strategies.


Asunto(s)
Epigénesis Genética , Lupus Eritematoso Sistémico , Adulto , Humanos , Linfocitos T CD4-Positivos/metabolismo , Michigan/epidemiología , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , Metilación de ADN , ADN , Ligando CD27/genética , Ligando CD27/metabolismo
10.
J Biochem Mol Toxicol ; 38(4): e23707, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622979

RESUMEN

Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Cardiomiopatías/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
11.
Mol Ther ; 31(9): 2575-2590, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37408308

RESUMEN

Tertiary lymphoid structures (TLSs) in tumor tissues facilitate immune cell trafficking and cytotoxicity, which benefits survival and favorable responses in immune therapy. Here, we observed a high correlation of tumor necrosis factor superfamily member 14 (LIGHT) expression with TLS signature genes, which are all markers for immune cell accumulation and better prognosis, through retrieving RNA sequencing (RNA-seq) data from patients with cancer, suggesting the potential of LIGHT in reconstituting a high immune-infiltrated tumor microenvironment. Accordingly, LIGHT co-expressed chimeric antigen receptor T (LIGHT CAR-T) cells not only showed enhanced cytotoxicity and cytokine production but also improved CCL19 and CCL21 expression by surrounding cells. And the supernatant of LIGHT CAR-T cells promoted T cell migration in a paracrine manner. Furthermore, LIGHT CAR-T cells showed superior anti-tumor efficacy and improved infiltration in comparison with conventional CAR-T cells in immunodeficient NSG mice. Accordingly, murine LIGHT-OT-1 T cells normalized tumor blood vessels and enforced intratumoral lymphoid structures in C57BL/6 syngeneic tumor mouse models, implying the potential of LIGHT CAR-T in clinical application. Taken together, our data revealed a straightforward strategy to optimize trafficking and cytotoxicity of CAR-T cells by redirecting TLSs through LIGHT expression, which has great potential to expand and optimize the application of CAR-T therapy in solid tumors.


Asunto(s)
Receptores Quiméricos de Antígenos , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Animales , Ratones , Línea Celular Tumoral , Inmunoterapia Adoptiva , Ratones Endogámicos C57BL , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Microambiente Tumoral/genética
12.
J Allergy Clin Immunol ; 151(4): 976-990.e5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36473503

RESUMEN

BACKGROUND: Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE: Our study sought to determine whether signaling via lymphotoxin beta receptor (LTßR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS: Conditional knockout mice deficient for LTßR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTßR. RESULTS: LTßR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTßR only in smooth muscle cells in smMHCCreLTßRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTßR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTßR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS: LTßR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.


Asunto(s)
Asma , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Humanos , Ratones , Animales , Receptor beta de Linfotoxina/genética , Asma/patología , Músculo Liso , Miocitos del Músculo Liso/patología , Ratones Noqueados , Alérgenos , Pulmón/patología
13.
J Allergy Clin Immunol ; 151(4): 1015-1026, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36481267

RESUMEN

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells. OBJECTIVE: This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS. METHODS: Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data. RESULTS: Proportions of B/plasma cells, neutrophils, CD8+ T cells, and M0 and M1 macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells. CONCLUSION: Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.


Asunto(s)
Factor Activador de Células B , Hidradenitis Supurativa , Neutrófilos , Hidradenitis Supurativa/inmunología , Hidradenitis Supurativa/metabolismo , Hidradenitis Supurativa/patología , Humanos , Linfocitos B/patología , Estudios de Casos y Controles , Masculino , Femenino , Adulto , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Factor Activador de Células B/metabolismo , Piel/metabolismo , Piel/patología
14.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255789

RESUMEN

LIGHT/TNFSF14 is linked to several signaling pathways as a crucial member of a larger immunoregulatory network. It is primarily expressed in inflammatory effector cells, and high levels of LIGHT have been reported in obesity. Thus, with the aim of deepening the knowledge of the role of LIGHT on adipose tissue phenotype, we studied wild-type (WT), Tnfsf14-/-, Rag-/- and Rag-/Tnfsf14- (DKO) mice fed a normal diet (ND) or high-fat diet (HFD). Our results show that, although there is no significant weight gain between the mice with different genotypes, it is significant within each of them. We also detected an increase in visceral White Adipose Tissue (vWAT) weight in all mice fed HFD, together with the lowest levels of vWAT weight in Tnfsf14-/- and DKO mice fed ND with respect to the other strain. Inguinal WAT (iWAT) weight is significantly affected by genotype and HFD. The least amount of iWAT was detected in DKO mice fed ND. Histological analysis of vWAT showed that both the genotype and the diet significantly affect the adipocyte area, whereas the number is affected only by the genotype. In iWAT, the genotype and the diet significantly affect mean adipocyte area and number; interestingly, the area with the least adipocyte was detected in DKO mice fed ND, suggesting a potential browning effect due to the simultaneous lack of mature lymphocytes and LIGHT. Consistently, Uncoupling Protein 1 (UCP1) staining of iWAT demonstrated that few positive brown adipocytes appeared in DKO mice. Furthermore, LIGHT deficiency is associated with greater levels of UCP1, highlighting the lack of its expression in Rag-/- mice. Liver examination showed that all mice fed HFD had a steatotic liver, but it was particularly evident for DKO mice. In conclusion, our study demonstrates that the adipose tissue phenotype is affected by LIGHT levels but also much more by mature lymphocytes.


Asunto(s)
Tejido Adiposo Blanco , Tejido Adiposo , Animales , Ratones , Adipocitos Marrones , Genotipo , Fenotipo , Proteína Desacopladora 1/genética
15.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000552

RESUMEN

Combination therapy of nivolumab and ipilimumab (NIVO + IPI) for metastatic renal cell carcinoma (mRCC) has shown efficacy, but approximately 20% of patients experience disease progression in the early stages of treatment. No useful biomarkers have been reported to date. Therefore, it is desirable to identify biomarkers to predict treatment responses in advance. We examined the tumor microenvironment (TME)-related gene expression in mRCC patients treated with NIVO + IPI, between the response and non-response groups, using tumor tissues, before administering NIVO + IPI. In TME-related genes, TNFSF9 expression was identified as a candidate for the predictive biomarker. Its expression discriminated between the response and non-response groups with 88.89% sensitivity and 87.50% specificity (AUC = 0.9444). We further analyzed the roles of TNFSF9 in TME using bioinformatics from The Cancer Genome Atlas (TCGA) cohort. An adaptive immune response was activated in the TNFSF9-high-expression tumors. Indeed, T follicular helper cells, plasma B cells, and tumor-infiltrating CD8+ T cells were increased in the tumors, which indicates the promotion of humoral immunity due to enhanced T-B interactions. However, as the number of regulatory T cells (Treg) increased in the tumors, the percentage of dysfunctional T cells also increased. This suggests that not only PD-1 but also CTLA-4 inhibition may have suppressed Treg activation and improved the therapeutic effect in the TNFSF9 high-expression tumors. Therefore, TNFSF9 may predict the therapeutic efficacy of NIVO + IPI for mRCC and allow more appropriate patient selection.


Asunto(s)
Carcinoma de Células Renales , Ipilimumab , Neoplasias Renales , Nivolumab , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Ipilimumab/administración & dosificación , Ipilimumab/uso terapéutico , Nivolumab/uso terapéutico , Nivolumab/administración & dosificación , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anciano , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
16.
J Clin Immunol ; 44(1): 17, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38129705

RESUMEN

PURPOSE: Inherited deficiencies of CD40 and CD40 ligand (CD40L) reflect the crucial immunological functions of CD40-CD40L interaction/signaling. Although numerous studies have provided a detailed description of CD40L deficiency, reports of CD40 deficiency are scarce. Herein, we describe the characteristics of all reported patients with CD40 deficiency. METHODS: The PubMed, Embase and Web of Science databases were searched for relevant literature published till 7th August 2023. Study deduplication and identification of relevant reports was performed using the online PICO Portal. The data were extracted using a pre-designed data extraction form and the SPSS software was used for analysis. RESULTS: Systematic literature review revealed 40 unique patients with CD40 deficiency. Respiratory tract and gastrointestinal infections were the predominant clinical manifestations (observed in 93% and 57% patients, respectively). Sclerosing cholangitis has been reported in nearly one-third of patients. Cryptosporidium sp. (29%) and Pneumocystis jirovecii (21%) were the most common microbes identified. Very low to undetectable IgG levels and severely reduced/absent switch memory B cells were observed in all patients tested/reported. Elevated IgM levels were observed in 69% patients. Overall, splice-site and missense variants were the most common (36% and 32%, respectively) molecular defects identified. All patients were managed with immunoglobulin replacement therapy and antimicrobial prophylaxis was utilized in a subset. Hematopoietic stem cell transplantation (HSCT) has been performed in 45% patients (curative outcome observed in 73% of these patients). Overall, a fatal outcome was reported in 21% patients. CONCLUSIONS: We provide a comprehensive description of all important aspects of CD40 deficiency. HSCT is a promising curative treatment option for CD40 deficiency.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Síndrome de Inmunodeficiencia con Hiper-IgM , Síndromes de Inmunodeficiencia , Linfopenia , Humanos , Ligando de CD40/genética , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Síndromes de Inmunodeficiencia/genética , Antígenos CD40/genética , Inmunoglobulina M
17.
J Neuroinflammation ; 20(1): 224, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794467

RESUMEN

BACKGROUND: The inflammatory response to cerebral ischemia is complex; however, most clinical studies of stroke outcome focus on a few selected proteins. We, therefore, aimed to profile a broad range of inflammation-related proteins to: identify proteins associated with ischemic stroke outcome that are independent of established clinical predictors; identify proteins subsets for outcome prediction; and perform sex and etiological subtype stratified analyses. METHODS: Acute-phase plasma levels of 65 inflammation-related proteins were measured in 534 ischemic stroke cases. Logistic regression was used to estimate associations to unfavorable 3-month functional outcome (modified Rankin Scale score > 2) and LASSO regressions to identify proteins with independent effects. RESULTS: Twenty proteins were associated with outcome in univariable models after correction for multiple testing (FDR < 0.05), and for 5 the association was independent of clinical variables, including stroke severity (TNFSF14 [LIGHT], OSM, SIRT2, STAMBP, and 4E-BP1). LASSO identified 9 proteins that could best separate favorable and unfavorable outcome with a predicted diagnostic accuracy (AUC) of 0.81; three associated with favorable (CCL25, TRAIL [TNFSF10], and Flt3L) and 6 with unfavorable outcome (CSF-1, EN-RAGE [S100A12], HGF, IL-6, OSM, and TNFSF14). Finally, we identified sex- and etiologic subtype-specific associations with the best discriminative ability achieved for cardioembolic, followed by cryptogenic stroke. CONCLUSIONS: We identified candidate blood-based protein biomarkers for post-stroke functional outcome involved in, e.g., NLRP3 inflammasome regulation and signaling pathways, such as TNF, JAK/STAT, MAPK, and NF-κB. These proteins warrant further study for stroke outcome prediction as well as investigations into the putative causal role for stroke outcome.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Proteómica , Inflamación/complicaciones , Proteínas Sanguíneas
18.
J Bone Miner Metab ; 41(4): 481-491, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37247112

RESUMEN

INTRODUCTION: Mesenchymal stem cells (MSCs) are drawing considerable attention in the field of regenerative medicine due to their differentiation capabilities. The miRNAs are among the most important epigenetic regulators of MSC differentiation. Our previous study identified miR-4699 as a direct suppressor of the DKK1 and TNSF11 gene expression. However, the precise osteogenic-related phenotype or mechanism caused by miR-4699 change has yet to be dealt with in depth. MATERIAL AND METHODS: In the present study, miR-4699 mimics were transfected into human Adipose tissue-derived mesenchymal stem cells (hAd-MSCs) and osteoblast marker gene expression (RUNX2, ALP, and OCN), was analyzed to investigate whether miR-4699 promotes osteoblast differentiation of hAd-MSCs through targeting the DKK-1 and TNFSF11. We further examined and compared the effects of recombinant human BMP2 with miR-4699 on cell differentiation. In addition to quantitative PCR, analysis of alkaline phosphatase activity, calcium content assay, and Alizarin red staining were used to explore osteogenic differentiation. To evaluate the effect of miR-4699 on its target gene (on protein level) we utilized the western blotting technique. RESULTS: The overexpression of miR-4699 in hAd-MSCs resulted in the stimulation of alkaline phosphatase activity, osteoblast mineralization, and the expression of RUNX2, ALP, and OCN osteoblast marker genes. CONCLUSION: Our findings indicated that miR-4699 supported and synergized the BMP2-induced osteoblast differentiation of mesenchymal stem cells. We suggest, thereof, the utilization of hsa-miR-4699 for further in vivo experimental investigation to reveal the potential therapeutic impact of regenerative medicine for different types of bone defects.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Osteogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Células Cultivadas , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética
19.
Fish Shellfish Immunol ; 132: 108484, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36516955

RESUMEN

Tumor necrosis factor ligand superfamily member 6 (TNFSF6), also known as FasL/CD95L, is essential for maintaining the body's immune homeostasis. However, the current reports on TNFSF6 in fish are relatively scarce. In the present study, we conducted functional analyses of a TNFSF6 (TroTNFSF6) from the teleost fish golden pompano (Trachinotus ovatus). TroTNFSF6 is composed of 228 amino acids and has a low similarity with other species (9.65%-58.79%). TroTNFSF6 was expressed in the 11 tissues tested and was significantly up-regulated after Edwardsiella tarda infection. In vivo, overexpression of TroTNFSF6 effectively stimulated the AKP and ACP activities, and reduced bacterial infection in fish tissues. Correspondingly, knockdown of TroTNFSF6 expression resulted in increasing bacterial dissemination and colonization in fish tissues. In vitro, recombinant TroTNFSF6 protein promoted the proliferation of T. ovatus head kidney lymphocytes (HKLs), and promoted the apoptosis of murine liver cancer cells (Hepa1-6). The results indicated that TroTNFSF6 plays an important role in the T. ovatus antibacterial immunity. These observations will facilitate the future in-depth study of teleost TNFSF6.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Perciformes , Animales , Ratones , Proteínas de Peces , Peces , Inmunidad Innata/genética , Ligandos , Proteínas Recombinantes , Factor de Necrosis Tumoral alfa
20.
J Endocrinol Invest ; 46(9): 1901-1909, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36917420

RESUMEN

PURPOSE/METHODS: Prader-Willi syndrome (PWS) is a rare genetic disorder displaying different clinical features, including obesity and bone impairment. LIGHT/TNFSF14 is a cytokine produced by immune cells affecting both fat and bone metabolism. The present study aimed to evaluate LIGHT serum levels in 28 children and 52 adult PWS patients compared to age and sex-matched controls, as well as correlations with parameters of bone and fat metabolism. RESULTS: Median serum LIGHT levels were significantly increased in pediatric PWS with respect to controls [255.82 (284.43) pg/ml vs 168.11 (76.23) pg/ml, p ≤ 0.02] as well as in adult PWS compared to controls [296.85 (895.95) pg/ml vs 134.18 (141.18) pg/ml, p ≤ 0.001]. In pediatric PWS, LIGHT levels were positively correlated with weight-SDS, height-SDS, and glucose levels, and negatively with total 25 (OH) vitamin D, cholesterol, LDL cholesterol and triglycerides. Additionally, LIGHT levels were negatively correlated with total BMD and fat mass. In adult PWS, LIGHT levels were positively correlated with weight, HDL cholesterol and PTH, and negatively with glucose, insulin, HOMA-IR, total cholesterol, LDL cholesterol, triglycerides, calcium, phosphorus, 25(OH)Vitamin D as well as with instrumental parameters of bone and fat quality. Consistently, multiple regression analysis showed that LIGHT serum levels in pediatric and adult PWS were predicted by different parameters including 25 (OH) Vitamin D as well as DXA parameters of bone and fat quality. CONCLUSIONS: In PWS children and adults the high levels of LIGHT could represent a marker of the altered bone and fat metabolism.


Asunto(s)
Síndrome de Prader-Willi , Adulto , Humanos , Niño , LDL-Colesterol , Vitamina D , Vitaminas , Glucosa , Triglicéridos , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda