Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Clin Genet ; 106(1): 37-46, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424693

RESUMEN

Genetic missense variants in TNNI3K, encoding troponin-I interacting kinase, have been associated with dilated cardiomyopathy (DCM) and observed in families with supraventricular tachycardias (SVT). Previously, a family harboring the TNNI3K-c.1615A > G (p.Thr539Ala) variant presented with congenital junctional ectopic tachycardia (CJET), an arrhythmia that arises from the atrioventricular (AV) node and His bundle. However, this was a relatively small four-generational family with limited genetic testing (N = 3). We here describe a multigenerational family with CJET harboring a novel ultra-rare TNNI3K variant: TNNI3K-c.1729C > T (p.Leu577Phe). Of all 18 variant carriers, 13 individuals presented with CJET, resulting in a genetic penetrance of 72%. In addition, CJET is reported in another small family harboring TNNI3K-c.2225C > T (p.Pro742Leu). Similar to the previously published CJET family, both TNNI3K variants demonstrate a substantial reduction of kinase activity. Our study contributes novel evidence supporting the involvement of TNNI3K genetic variants as significant contributors to CJET, shedding light on potential mechanisms underlying this cardiac arrhythmia.


Asunto(s)
Linaje , Proteínas Serina-Treonina Quinasas , Taquicardia Ectópica de Unión , Humanos , Femenino , Masculino , Adulto , Taquicardia Ectópica de Unión/genética , Taquicardia Ectópica de Unión/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Adolescente , Niño , Adulto Joven
2.
Dev Growth Differ ; 66(2): 119-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193576

RESUMEN

Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Células Madre Pluripotentes Inducidas , Niño , Preescolar , Humanos , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/terapia , Mutación , Miocitos Cardíacos/fisiología
3.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
4.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628941

RESUMEN

BACKGROUND: Troponin-I interacting kinase encoded by the TNNI3K gene is expressed in nuclei and Z-discs of cardiomyocytes. Mutations in TNNI3K were identified in patients with cardiac conduction diseases, arrhythmias, and cardiomyopathy. METHODS: We performed cardiac gene expression, whole genome sequencing (WGS), and cardiac function analysis in 40 strains of BXD recombinant inbred mice derived from C57BL/6J (B6) and DBA/2J (D2) strains. Expression quantitative trait loci (eQTLs) mapping and gene enrichment analysis was performed, followed by validation of candidate Tnni3k-regulatory genes. RESULTS: WGS identified compound splicing and missense T659I Tnni3k variants in the D2 parent and some BXD strains (D allele) and these strains had significantly lower Tnni3k expression than those carrying wild-type Tnni3k (B allele). Expression levels of Tnni3k significantly correlated with multiple cardiac (heart rate, wall thickness, PR duration, and T amplitude) and metabolic (glucose levels and insulin resistance) phenotypes in BXDs. A significant cis-eQTL on chromosome 3 was identified for the regulation of Tnni3k expression. Furthermore, Tnni3k-correlated genes were primarily involved in cardiac and glucose metabolism-related functions and pathways. Genes Nodal, Gnas, Nfkb1, Bmpr2, Bmp7, Smad7, Acvr1b, Acvr2b, Chrd, Tgfb3, Irs1, and Ppp1cb were differentially expressed between the B and D alleles. CONCLUSIONS: Compound splicing and T659I Tnni3k variants reduce cardiac Tnni3k expression and Tnni3k levels are associated with cardiac and glucose metabolism-related phenotypes.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Miocitos Cardíacos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Glucosa , Proteínas Serina-Treonina Quinasas
5.
BMC Cardiovasc Disord ; 22(1): 240, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614389

RESUMEN

BACKGROUND: Restrictive cardiomyopathy (RCM) presents a high risk for sudden cardiac death in pediatric patients. Constrictive pericarditis (CP) exhibits a similar clinical presentation to RCM and requires differential diagnosis. While mutations of genes that encode sarcomeric and cytoskeletal proteins may lead to RCM, infection, rather than gene mutation, is the main cause of CP. Genetic testing may be helpful in the clinical diagnosis of RCM. METHODS: In this case series study, we screened for TNNI3, TNNT2, and DES gene mutations that are known to be etiologically linked to RCM in four pediatric patients with suspected RCM. RESULTS: We identified one novel heterozygous mutation, c.517C>T (substitution, position 517 C → T) (amino acid conversion, p.Leu173Phe), and two already known heterozygous mutations, c.508C>T (substitution, position 508, C → T) (amino acid conversion, p.Arg170Trp) and c.575G>A (substitution, position 575, G → A) (amino acid conversion, p.Arg192His), in the TNNI3 gene in three of the four patients. CONCLUSION: Our findings support the notion that genetic testing may be helpful in the clinical diagnosis of RCM.


Asunto(s)
Cardiomiopatía Restrictiva , Pruebas Genéticas , Pericarditis Constrictiva , Aminoácidos/genética , Cardiomiopatía Restrictiva/diagnóstico , Cardiomiopatía Restrictiva/genética , Niño , Desmina/genética , Pruebas Genéticas/métodos , Humanos , Mutación , Pericarditis Constrictiva/diagnóstico , Troponina I/genética , Troponina T/genética
6.
Clin Exp Pharmacol Physiol ; 49(11): 1169-1178, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35781726

RESUMEN

Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase that has been identified as a diagnostic marker and a therapeutic target in cardiovascular diseases. However, the biological function of TNNI3K in cardiac dysfunction and remodelling remains elusive. In the present study, a Tnni3k cardiomyocyte-specific knockout (Tnni3k-cKO) mouse model was established. Echocardiography was used to evaluate cardiac function in mice. Heart failure markers were detected using enzyme-linked immunosorbent assay. Haematoxylin and eosin staining, wheat germ agglutinin staining, Masson's trichrome staining, Sirius red staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining were used to assess histopathological changes, cardiac hypertrophy, collagen deposition and myocardial apoptosis, respectively. Expression levels of TNNI3K, apoptosis-related proteins, and p38 mitogen-activated protein kinase were measured using Western blot analysis. Compared to wild-type controls, cardiac dysfunction and cardiac remodelling of Tnni3k-cKO mice increased gradually with age. Tnni3k-cKO mice exhibited cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. Upregulation of cleaved caspase-3 in Tnni3k-cKO mice appeared to be related to phosphorylation and activation of the p38 mitogen-activated protein kinase signalling pathway. In conclusion, this study shows that TNNI3K is essential for cardiac development and function, providing new insights into the development of novel therapeutic strategies for cardiac diseases.


Asunto(s)
Cardiopatías , Troponina I , Animales , Apoptosis , Cardiomegalia/metabolismo , Caspasa 3/metabolismo , ADN Nucleotidilexotransferasa/metabolismo , Eosina Amarillenta-(YS)/metabolismo , Cardiopatías/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas , Troponina I/metabolismo , Aglutininas del Germen de Trigo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Perfusion ; : 2676591221141791, 2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36464918

RESUMEN

BACKGROUND: Myocardial protection during operations with cardiopulmonary bypass (CPB) and aortic cross clamping is vital. For this purpose, Del Nido (DN) and Custodiol cardioplegia (CC) solutions are used for single-dose cardioplegia in cardiac surgical procedures with CPB. Present study aimed to compare the effects of DN and CC on peri-operative clinical outcomes in pediatrics with Tetralogy of Fallot (TF) undergoing cardiopulmonary bypass. METHODS: Present randomized clinical trial was performed in two trial groups with parallel design. One group received DN and another group received CC. We assessed circulatory Troponin-I (cTnI) and coronary sinus lactate level as primary outcomes. Secondary outcomes were ventilation time, electrolytes levels, pump time, cross-clamp time and other clinical parameters. RESULTS: Duration of CPB and cross-clamp were the same in both groups. There were no significant differences in hemodynamic parameters, left ventricular ejection fraction after the surgery and discharge time between the two trial groups. Ventilation time (8.5 vs. 18; p = 0.001), ICU stay, Troponin-I in ICU admission and Coronary sinus lactate level (p = 0.001) were significantly higher among patients of Custodiol group compared to other trial group. Electrolytes Na, Cl and K levels, during CPB, were significantly less in Custodiol group. CONCLUSION: When used for inducing cardiac arrest during CPB, DN solution offers better maintenance of the electrolyte balance during CPB, and is associated with less circulatory cTnI and coronary sinus lactate level compared with the CC.

8.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203974

RESUMEN

In the two decades since the discovery of TNNI3K it has been implicated in multiple cardiac phenotypes and physiological processes. TNNI3K is an understudied kinase, which is mainly expressed in the heart. Human genetic variants in TNNI3K are associated with supraventricular arrhythmias, conduction disease, and cardiomyopathy. Furthermore, studies in mice implicate the gene in cardiac hypertrophy, cardiac regeneration, and recovery after ischemia/reperfusion injury. Several new papers on TNNI3K have been published since the last overview, broadening the clinical perspective of TNNI3K variants and our understanding of the underlying molecular biology. We here provide an overview of the role of TNNI3K in cardiomyopathy and arrhythmia covering both a clinical perspective and basic science advancements. In addition, we review the potential of TNNI3K as a target for clinical treatments in different cardiac diseases.


Asunto(s)
Cardiopatías/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Cardiopatías/genética , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Terapia Molecular Dirigida , Proteínas Serina-Treonina Quinasas/genética , Regeneración
9.
J Mol Cell Cardiol ; 142: 118-125, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278834

RESUMEN

INTRODUCTION: Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE: To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS: Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS: Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION: TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.


Asunto(s)
Alelos , Cardiomiopatías/genética , Cardiomiopatías/mortalidad , Predisposición Genética a la Enfermedad , Variación Genética , Sitios de Carácter Cuantitativo , Troponina/genética , Edad de Inicio , Sustitución de Aminoácidos , Cardiomiopatías/diagnóstico , Mapeo Cromosómico , Bases de Datos Genéticas , Estudios de Asociación Genética , Genotipo , Humanos , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Troponina/metabolismo , Troponina I/genética , Troponina T/genética
10.
J Clin Lab Anal ; 34(9): e23418, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32529721

RESUMEN

BACKGROUND: Cardiac conduction disease (CCD) is a common cardiovascular disease which can lead to life-threatening conditions. The importance of heredity in CCD has been realized in recent years. Several causal genes have been found to be implicated in CCD such as SCN5A, TRPM4, SCN1B, TNNI3K, LMNA, and NKX2.5. To date, only four genetic mutations in TNNI3K have been identified related to CCD. METHODS: Whole-exome sequencing (WES) was carried out in order to identify the underlying disease-causing mutation in a Chinese family with CCD. The potential mutations were confirmed by Sanger sequencing. Real-time qPCR was used to detect the level of TNNI3K mRNA expression. RESULTS: A nonsense mutation in TNNI3K (NM_015978.2: g.170891C > T, c.1441C > T) was identified in this family and validated by Sanger sequencing. Real-time qPCR confirmed that the level of TNNI3K mRNA expression was decreased compared with the controls. CONCLUSIONS: This study found the first nonsense TNNI3K mutation associated with CCD in a Chinese family. TNNI3K harboring the mutation (c.1441C > T) implicated a loss-of-function pathogenic mechanism with an autosomal dominant inheritance pattern. This research enriches the phenotypic spectrum of TNNI3K mutations, casting a new light upon the genotype-phenotype correlations between TNNI3K mutations and CCD and indicating the importance of TNNI3K screening in CCD patients.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Codón sin Sentido/genética , Proteínas Serina-Treonina Quinasas/genética , Anciano de 80 o más Años , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , China , ADN/sangre , Electrocardiografía , Humanos , Masculino , Persona de Mediana Edad , Linaje , ARN Mensajero/sangre , Secuenciación del Exoma
11.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272798

RESUMEN

We report the synthesis of several related 4-anilinoquinazolines as inhibitors of cardiac troponin I-interacting kinase (TNNi3K). These close structural analogs of 3-((6,7-dimethoxyquinazolin-4-yl)amino)-4-(dimethylamino)-N-methylbenzenesulfonamide (GSK114) provide new understanding of structure-activity relationships between the 4-anilinoquinazoline scaffold and TNNi3K inhibition. Through a small focused library of inhibitors, we observed that the N-methylbenzenesulfonamide was driving the potency in addition to the more traditional quinazoline hinge-binding motif. We also identified a compound devoid of TNNi3K kinase activity due to the addition of a methyl group in the hinge binding region. This compound could serve as a negative control in the study of TNNi3K biology. Small molecule crystal structures of several quinazolines have been solved, supporting observations made about overall conformation and TNNi3K inhibition.


Asunto(s)
Compuestos de Anilina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinazolinas/farmacología , Humanos , Miocitos Cardíacos/metabolismo , Troponina I/metabolismo
12.
BMC Med Genet ; 20(1): 61, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953456

RESUMEN

BACKGROUND: Restrictive cardiomyopathy is a rare cardiac disease, for which several genes including TNNT2, MYPN, FLNC and TNNI3 have been associated with its familial form. CASE PRESENTATION: Here we describe a female proband with a severely manifested restrictive phenotype leading to heart transplantation at the age of 41, who was found homozygous for the novel TNNI3 mutation: NM_000363.4:c.586G > C, p.(Asp196His). Her parents were third-degree cousins originating from a small village and although they were found heterozygous for the same variant they displayed no symptoms of the disease. Her older sister who was also found heterozygous was asymptomatic. Her twin sister and her brother who were homozygous for the same variant displayed a restrictive and a hypertrophic phenotype, respectively. Their children are all carriers of the mutation and remain asymptomatic until the age of 21. CONCLUSION: These observations point to a recessive mode of inheritance reported for the first time for this combination of gene/disease.


Asunto(s)
Cardiomiopatías/genética , Genes Recesivos , Mutación , Troponina I/genética , Adulto , Femenino , Genotipo , Humanos , Masculino , Linaje
13.
Clin Genet ; 96(6): 549-559, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568572

RESUMEN

The underlying genetic mechanisms and early pathological events of children with primary cardiomyopathy (CMP) are insufficiently characterized. In this study, we aimed to characterize the mutational spectrum of primary CMP in a large cohort of patients ≤18 years referred to a tertiary center. Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a panel-based next-generation sequencing approach of 89 genes. At least one pathogenic or probably pathogenic variant was identified in 30/80 (38%) index patients. In all CMP subgroups, patients carried most frequently variants of interest in sarcomere genes suggesting them as a major contributor in pediatric primary CMP. In MYH7, MYBPC3, and TNNI3, we identified 18 pathogenic/probably pathogenic variants (MYH7 n = 7, MYBPC3 n = 6, TNNI3 n = 5, including one homozygous (TNNI3 c.24+2T>A) truncating variant. Protein and transcript level analysis on heart biopsies from individuals with homozygous mutation of TNNI3 revealed that the TNNI3 protein is absent and associated with upregulation of the fetal isoform TNNI1. The present study further supports the clinical importance of sarcomeric mutation-not only in adult-but also in pediatric primary CMP. TNNI3 is the third most important disease gene in this cohort and complete loss of TNNI3 leads to severe pediatric CMP.


Asunto(s)
Cardiomiopatías/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Troponina I/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Familia , Femenino , Feto/patología , Regulación de la Expresión Génica , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación/genética , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
14.
Mol Cell Biochem ; 438(1-2): 167-174, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28744816

RESUMEN

The marked clinical and genetic heterogeneity seen in hypertrophic (HCM) and dilated cardiomyopathies (DCM) suggests involvement of disease modifiers and environmental factors in the pathophysiology of these diseases. In the current study, we examined association of single nucleotide polymorphisms (SNPs) of three candidate genes, ACE2 (rs6632677), TNNI3K (rs49812611) and CALM3 (rs13477425) with clinical phenotypes of HCM and DCM patients of North Indian ethnicity. Prevalence of ACE2 (7160726 C>G) variant genotypes (CG and GG) was significantly higher in DCM subjects as compared to controls. Prevalence of TNNI3K (3784 C>T) and CALM3 (-34T>A) variant homozygous genotype were significantly higher in HCM and DCM subjects as compared to controls. DCM patients with CT genotype showed significant decrease in LVEF as compared to CC genotype (p < 0.03). There was significant gene-gene interaction between these SNPs and three-way SNP combination of ACE2 C>G, TNN13K C>T, CALM3 A>T gene variants and was associated with high risk of HCM and DCM. Presence of ACE2 (7160726 C>G) and CALM3 (-34T>A) variant genotypes in HCM Patients with mutations (sarcomeric or non sarcomeric genes) was associated with increased mean septal thickness, further suggesting a role of these gene variants in modifying disease phenotype. Our results suggest that ACE2, TNNI3K and CALM3 polymorphisms are associated with increased risk of HCM and DCM and may act as disease modifiers of these diseases.


Asunto(s)
Calmodulina/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Quinasas Quinasa Quinasa PAM/genética , Peptidil-Dipeptidasa A/genética , Polimorfismo de Nucleótido Simple , Adulto , Enzima Convertidora de Angiotensina 2 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas , Factores de Riesgo
15.
Cell Physiol Biochem ; 41(1): 381-398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28135716

RESUMEN

Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. METHODS: First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. RESULTS: The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. CONCLUSION: our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Diferenciación Celular , Conexina 43/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp , Proteína Quinasa C-epsilon/metabolismo , Proteínas Serina-Treonina Quinasas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo
16.
Mol Genet Genomics ; 291(1): 79-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26169204

RESUMEN

Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as 'missing heritability'. One potential cause for 'missing heritability' is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by fivefold and doubles risk of heart failure and sudden death. Here, we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon-intron boundaries of TNNI3 in a panel of 1127 unrelated AF patients and 1583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggest that rare TNNI3 variants are associated with AF (P = 0.03). TNNI3 encodes troponin I, a key regulator of the contraction-relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability.


Asunto(s)
Pueblo Asiatico/genética , Fibrilación Atrial/genética , Quinasas Quinasa Quinasa PAM/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Niño , Exoma/genética , Exones/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas Serina-Treonina Quinasas , Adulto Joven
17.
Bioorg Med Chem Lett ; 26(14): 3355-3358, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27246618

RESUMEN

A series of selective TNNI3K inhibitors were developed by modifying the hinge-binding heterocycle of a previously reported dual TNNI3K/B-Raf inhibitor. The resulting quinazoline-containing compounds exhibit a large preference (up to 250-fold) for binding to TNNI3K versus B-Raf, are useful probes for elucidating the biological pathways associated with TNNI3K, and are leads for discovering novel cardiac medicines. GSK114 emerged as a leading inhibitor, displaying significant bias (40-fold) for TNNI3K over B-Raf, exceptional broad spectrum kinase selectivity, and adequate oral exposure to enable its use in cellular and in vivo studies.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Sulfonamidas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
18.
J Mol Cell Cardiol ; 82: 167-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25787061

RESUMEN

Cardiovascular diseases are an important cause of morbidity and mortality worldwide and the global burden of these diseases continues to grow. Therefore new therapies are urgently needed. The role of protein kinases in disease, including cardiac disease, is long recognized, making kinases important therapeutic targets. We here review the knowledge gathered in the last decade about troponin I-interacting kinase (TNNI3K), a kinase with cardiac-restricted expression that has been implicated in various cardiac phenotypes and diseases including heart failure, cardiomyopathy, ischemia/reperfusion injury and conduction of the cardiac electrical impulse.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Regulación de la Expresión Génica , Humanos , Quinasas Quinasa Quinasa PAM/química , Miocardio/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Transporte de Proteínas
19.
Front Cardiovasc Med ; 11: 1365209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854656

RESUMEN

Background: Restrictive cardiomyopathy (RCM) represents a rare cardiovascular disorder stemming from filament-associated genes. Nonetheless, treating RCM presents considerable challenges, particularly concerning device implantation and mechanical support. Furthermore, elucidating the molecular function of specific variants holds promise in benefiting patients and enhancing prognosis, given the significant heterogeneity among RCM variants. Case presentation: The proband, an eight-year-old female, was admitted to our hospital post cardiopulmonary resuscitation due to sudden cardiac arrest. Echocardiography revealed bilateral atrial enlargement. Whole-exome sequencing uncovered a novel heterozygous mutation (c.509G>A, p.R170Q) in TNNI3. Evaluation using the MutationTaster application deemed c.509G>A pathogenic (probability = 0.99). Following clinical manifestations, imaging assessments, and genetic screening, the proband received an RCM diagnosis. ECMO was recommended along with continuous renal replacement therapy. However, persistent atrial flutter ensued post-ECMO withdrawal. Attempts to restore cardiac rhythm with cardioversion, metoprolol, and amiodarone proved futile. Subsequent heart failure led to the patient's demise due to cardiac shock. Based on crystal protein structural analysis, we observed that cTnI-R170Q and R170W exerted similar impacts on protein structural stability and formation. However, both differed significantly from cTnI-R170G, primarily influencing amino acid regions 32-79 and 129-149, involved in TnC and actin binding. Therefore, cTnI-R170Q was revealed to induce RCM via the same molecular mechanism as cTnI-R170W. Conclusion: Managing RCM remains a critical challenge. This study underscores the discouragement of device implantations for cardiac pump functional support in RCM, particularly for non-short-term scheduled HTx. Additionally, considering catheter ablation for atrial fibrosis-induced AFs is recommended. Mechanistically, cTnI-R170Q primarily diminishes troponin-actin interactions and destabilizes thin filaments.

20.
Mol Genet Genomic Med ; 12(6): e2486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924380

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle, systolic dysfunction, and normal or reduced thickness of the left ventricular wall. It is a leading cause of heart failure and cardiac death at a young age. Cases with neonatal onset DCM were correlated with severe clinical presentation and poor prognosis. A monogenic molecular etiology accounts for nearly half of cases. FAMILY DESCRIPTION: Here, we report a family with three deceased offspring at the age of 1 year old. The autopsy of the first deceased infant revealed a DCM. The second infant presented a DCM phenotype with a severely reduced Left Ventricular Ejection Fraction (LVEF) of 10%. Similarly, the third infant showed a severe DCM phenotype with LVEF of 30% as well, in addition to eccentric mitral insufficiency. RESULTS: Exome sequencing was performed for the trio (the second deceased infant and her parents). Data analysis following the autosomal dominant and recessive patterns of inheritance was carried out along with a mitochondrial pathways-based analysis. We identified a homozygous frameshift variant in the TNNI3 gene (c.204delG; p.(Arg69AlafsTer8)). This variant has been recently reported in the ClinVar database in association with cardiac phenotypes as pathogenic or likely pathogenic and classified as pathogenic according to ACMG. CONCLUSION: Genetic counseling was provided for the family and a prenatal diagnosis of choronic villus was proposed in the absence of pre-implantation genetic diagnosis possibilities. Our study expands the case series of early-onset DCM patients with a protein-truncating variant in the TNNI3 gene by reporting three affected infant siblings.


Asunto(s)
Cardiomiopatía Dilatada , Consanguinidad , Mutación del Sistema de Lectura , Homocigoto , Linaje , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Femenino , Masculino , Lactante , Fenotipo , Troponina I
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda