Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Mol Cell ; 83(4): 556-573.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36696898

RESUMEN

The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.


Asunto(s)
ADN , Nucleotidiltransferasas , ADN/genética , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de la Membrana , Nucleotidiltransferasas/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV
2.
EMBO Rep ; 24(4): e55069, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744297

RESUMEN

Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Melanoma/genética , Membrana Celular/metabolismo , Neoplasias Cutáneas/genética , Canales Catiónicos TRPV/genética , Movimiento Celular/genética , Invasividad Neoplásica/patología , Calcio/metabolismo
3.
Biochem Biophys Res Commun ; 721: 150128, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776831

RESUMEN

PURPOSE: Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS: In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS: Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION: These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hipocampo , Sistema de Señalización de MAP Quinasas , Plasticidad Neuronal , Ratas Sprague-Dawley , Estrés Psicológico , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Plasticidad Neuronal/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/metabolismo , Depresión/tratamiento farmacológico , Enfermedad Crónica , Probenecid/farmacología
4.
J Cell Biochem ; 124(9): 1391-1403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37565651

RESUMEN

Our previous studies have demonstrated that macrophages (RAW264.7) have a special ability for sensing the gradient of fluid shear stress (FSS) and migrate toward the low-FSS region. However, the molecular mechanism regulating this phenomenon is still unclear. In this study, we examined the transcriptome genes in RAW264.7 cells, MC3T3-E1 osteoblasts, mesenchymal stem cells, canine renal epithelial cells, and periodontal ligament cells. The expression levels of genes related to cell migration, force transfer, and force sensitivity in the Ca2+ signaling pathway were analyzed. We observed that the transient receptor potential cation channel type 2 (TRPV2) was highly expressed in RAW264.7 cells. Furthermore, we used lentiviral transfection to knockdown TRPV2 expression in RAW264.7 cells and studied the effect of TRPV2 on the migration of RAW264.7 cells under a gradient FSS field. The results showed that compared with normal cells, TRPV2-knockdown cells had impaired ability for sensing FSS gradient to migrate toward the low-FSS region and lower intracellular calcium response to FSS stimulation. This study may reveal the molecular mechanism of regulating the directional migration of macrophages under a gradient FSS field.


Asunto(s)
Osteoblastos , Transducción de Señal , Animales , Perros , Ratones , Línea Celular , Macrófagos , Osteoblastos/metabolismo , Células RAW 264.7 , Estrés Mecánico
5.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G219-G230, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719093

RESUMEN

In cirrhosis, several molecular alterations such as resistance to apoptosis could accelerate carcinogenesis. Recently, mechanotransduction has been attracting attention as one of the causes of these disturbances. In patients with cirrhosis, the serum sodium levels progressively decrease in the later stage of cirrhosis, and hyponatremia leads to serum hypo-osmolality. Since serum sodium levels in patients with cirrhosis with liver cancer are inversely related to cancer's number, size, stage, and cumulative survival, we hypothesized that hypo-osmolality-induced mechanotransduction under cirrhotic conditions might contribute to oncogenesis and/or progression of hepatocellular carcinoma (HCC). In this study, we adjusted osmosis of culture medium by changing the sodium chloride concentration and investigated the influence of hypotonic conditions on the apoptosis resistance of an HCC cell line, HepG2, using a serum-deprivation-induced apoptosis model. By culturing the cells in a serum-free medium, the levels of an antiapoptotic protein Bcl-2 were downregulated. In contrast, the hypotonic conditions caused apoptosis resistance by upregulation of Bcl-2. Next, we examined which pathway was involved in the apoptosis resistance. Hypotonic conditions enhanced AKT signaling, and constitutive activation of AKT in HepG2 cells led to upregulation of Bcl-2. Moreover, we revealed that the enhancement of AKT signaling was caused by intracellular calcium influx via a mechanosensor, TRPV2. Our findings suggested that hyponatremia-induced serum hypotonic in patients with cirrhosis promoted the progression of hepatocellular carcinoma.NEW & NOTEWORTHY Our study first revealed that hypo-osmolarity-induced mechanotransduction enhanced calcium-mediated AKT signaling via TRPV2 activation, resulting in contributing to apoptosis resistance. The finding indicates a possible view that liver cirrhosis-induced hyponatremia promotes hepatocellular carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Hiponatremia , Neoplasias Hepáticas , Humanos , Apoptosis , Calcio/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Neoplasias Hepáticas/metabolismo , Mecanotransducción Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sodio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
6.
Ann Surg Oncol ; 30(13): 8743-8754, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37684371

RESUMEN

BACKGROUND: The potential of membrane transporters activated in cancer stem cells (CSCs) as new therapeutic targets for cancer is attracting increasing interest. Therefore, the present study examined the expression profiles of ion transport-related molecules in the CSCs of esophageal adenocarcinoma (EAC). METHODS: Cells that highly expressed aldehyde dehydrogenase 1 family member A1 (ALDH1A1) were separated from OE33 cells, a human Barrett's EAC cell line, by fluorescence-activated cell sorting. CSCs were identified based on the formation of tumorspheres. Gene expression profiles in CSCs were examined by a microarray analysis. RESULTS: Among OE33 cells, ALDH1A1 messenger RNA levels were higher in CSCs than in non-CSCs. Furthermore, CSCs exhibited resistance to cisplatin and had the capacity to redifferentiate. The results of the microarray analysis of CSCs showed the up-regulated expression of several genes related to ion channels/transporters, such as transient receptor potential vanilloid 2 (TRPV2) and solute carrier family 12 member 2 (SLC12A2). The cytotoxicities of the TRPV2 inhibitor tranilast and the SLC12A2 inhibitor furosemide were higher at lower concentrations in CSCs than in non-CSCs, and both markedly reduced the number of tumorspheres. The cell population among OE33 cells that highly expressed ALDH1A1 also was significantly decreased by these inhibitors. CONCLUSIONS: Based on the present results, TRPV2 and SLC12A2 are involved in the maintenance of CSCs, and their specific inhibitors, tranilast and furosemide, respectively, have potential as targeted therapeutic agents for EAC.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Esofágicas , Humanos , Furosemida/metabolismo , Neoplasias Esofágicas/patología , Adenocarcinoma/patología , Antineoplásicos/uso terapéutico , Células Madre Neoplásicas , Línea Celular Tumoral , Canales Catiónicos TRPV/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
7.
Ann Surg Oncol ; 30(13): 8704-8716, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37599296

RESUMEN

BACKGROUND: Transient receptor potential vanilloid 2 (TRPV2) is a member of the TRP superfamily of non-specific cation channels with functionally diverse roles. We herein investigated the effects of TRPV2 on the expression of programmed cell death-ligand 1 (PD-L1) and its binding ability to programmed cell death-1 (PD-1) in gastric cancer (GC). METHODS: Knockdown (KD) experiments were performed on human GC cell lines using TRPV2 small-interfering RNA. The surface expression of PD-L1 and its binding ability to PD-1 were analyzed by flow cytometry. Eighty primary tissue samples were assessed by immunohistochemistry (IHC), and the relationships between IHC results, clinicopathological factors, and patient prognosis were analyzed. The molecular mechanisms underlying the effects of TRPV2 on the intracellular ion environment were also investigated. RESULTS: TRPV2-KD decreased the expression level of PD-L1 in NUGC4 and MKN7 cells, thereby inhibiting its binding to PD-1. A survival analysis revealed that 5-year overall survival rates were significantly lower in the TRPV2 high expression and PD-L1-positive groups. In IHC multivariate analysis of GC patients, high TRPV2 expression was identified as an independent prognostic factor. Furthermore, a positive correlation was observed between the expression of TRPV2 and PD-L1. An immunofluorescence analysis showed that TRPV2-KD decreased the intracellular concentration of calcium ([Ca2+]i). Treatment with ionomycin/PMA (phorbol 12-myristate 13-acetate), which increased [Ca2+]i, upregulated the protein expression of PD-L1 and promoted its binding to PD-1. CONCLUSIONS: The surface expression of PD-L1 and its binding ability to PD-1 in GC were regulated by TRPV2 through [Ca2+]i, indicating the potential of TRPV2 as a biomarker and target of immune checkpoint blockage for GC.


Asunto(s)
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Gástricas/patología , Análisis de Supervivencia , Canales Catiónicos TRPV
8.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761971

RESUMEN

Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.


Asunto(s)
Enfermedades Neurodegenerativas , Fenómica , Animales , Ratas , Enfermedades Neurodegenerativas/tratamiento farmacológico , Microglía , Hipocampo , Modelos Animales de Enfermedad
9.
Cancer Sci ; 113(4): 1235-1249, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34971020

RESUMEN

Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by accumulation of immature cells in bone marrow and peripheral blood. Although successful results were obtained with tyrosine kinase inhibitors, several patients showed resistance. For this reason, the identification of new strategies and therapeutic biomarkers represents an attractive goal. The role of transient receptor potential (TRP) ion channels as possible drug targets has been elucidated in different types of cancer. Among natural compounds known to activate TRPs, cannabidiol (CBD) displays anticancer properties. By using FACS analysis, confocal microscopy, gene silencing, and cell growth assay, we demonstrated that CBD, through TRPV2, inhibits cell proliferation and cell cycle in CML cells. It promoted mitochondria dysfunction and mitophagy as shown by mitochondrial mass reduction and up-regulation of several mitophagy markers. These effects were associated with changes in the expression of octamer-binding transcription factor 4 and PU.1 markers regulated during cellular differentiation. Interestingly, a synergistic effect by combining CBD with the standard drug imatinib was found and imatinib-resistant cells remain susceptible to CBD effects. Therefore, the targeting of TRPV2 by using CBD, through the activation of mitophagy and the reduction in stemness, could be a promising strategy to enhance conventional therapy and improve the prognosis of CML patients.


Asunto(s)
Cannabidiol , Leucemia Mielógena Crónica BCR-ABL Positiva , Apoptosis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Proliferación Celular , Resistencia a Antineoplásicos , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
10.
Biochem Biophys Res Commun ; 620: 135-142, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35785569

RESUMEN

Transient receptor potential vanillic acid 2 (TRPV2) are well recognized for their contributions to neuronal development, cardiac function, immunity and cancer. However, the precise roles for this thermo TRPchannels in neurological disorder remain unknown. In this study, we employed the CRISPR/Cas9 system to generate genetic mutations of TRPV2. Genetic mutation of TRPV2 resulted in autistic-like phenotypes in mice accompanied with the disordered electrical signals recorded by multi-channels in vivo. To determine possible molecular mechanisms, western blotting was further used to assess the possible involvement of several autism-related proteins. The significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus was observed. Together, our findings suggest that genetic mutation of TRPV2 induces autism-like behavior, results in decreased expression of the R2 subunit of the GABA-B receptor.


Asunto(s)
Ansiedad/genética , Receptores de GABA-B , Canales Catiónicos TRPV , Animales , Canales de Calcio/metabolismo , Hipocampo/metabolismo , Ratones , Mutación , Receptores de GABA-B/metabolismo , Canales Catiónicos TRPV/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
BMC Cardiovasc Disord ; 22(1): 546, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513971

RESUMEN

BACKGROUND: Recent study has shown that the transient receptor potential vanilloid 2 (TRPV2) channel was exclusively upregulated in patients with atrial fibrillation (AF), and that this overexpression might be detrimental for occurrence and maintenance of AF. We aimed to characterize the expression levels of TRPV2 mRNA in peripheral blood mononuclear cells (PBMCs) with/without early recurrence of atrial fibrillation (ERAF) after radiofrequency catheter ablation (RFCA), and to find a reliable predictor for ERAF. METHODS: 65 patients of AF, who underwent RFCA successfully, then divided into two groups according to ERAF during following 3 months. PBMCs were isolated from whole blood by Ficoll gradient centrifugation before and after RFCA. Gene set enrichment analysis was performed to evaluate TRPV channels expression levels and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping was used for pathway enrichment analysis. RESULTS: There was no significant difference in the TRPV2 mRNA expression level between the two groups before RFCA, while without ERAF group of TRPV2 expression was markedly reduced compared to ERAF group after RFCA. Moreover, the number of TRPV2 expression was confirmed as an independent predictor for the first time through receiver operating characteristic and Kaplan-Meier survival curve analysis. It should be pointed out that the above results were only used to predict ERAF, and have no predictive significance for late recurrence of atrial fibrillation according to the current data. Additionally, ERAF was inversely correlated with P wave dispersion. KEGG mapping further clustered 41 pathways, revealing that ''cyclic guanosine monophosphate-protein kinase G signaling pathway'' was significantly enriched. CONCLUSIONS: We firstly assume that downregulated expression of peripheral TRPV2 appear in patients without ERAF after RFCA. TRPV2 may thus represent a novel predictor of early phase after successful radiofrequency ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/genética , Fibrilación Atrial/cirugía , Leucocitos Mononucleares , Recurrencia , Resultado del Tratamiento , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , ARN Mensajero/genética , Canales Catiónicos TRPV/genética
12.
Int J Med Sci ; 19(6): 1072-1081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813298

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is notorious for the rapid progression especially early tumor metastasis due to the unclear mechanism. Recently, ETV5 attracts much attention for its potential role as an oncogenic transcription factor involved in multiple cancers. However, no one reported the mechanism behind the association between ETV5 expression and esophageal squamous cell carcinoma progression. In this study, we found that ETV5 was upregulated in ESCC both from online database and our ESCC tissues and ETV5 was associated with tumor staging and prognosis. Knockdown of ETV5 or its downstream genes SKA1 and TRPV2 significantly suppress ESCC cells migration and invasion, respectively. Additionally, in vivo study showed knockdown of ETV5 inhibited tumor metastasis. Further experiments unveiled ETV5 could transcriptionally upregulate the expression of SKA1 and TRPV2 and further activate MMPs in ESCC progression. In conclusion, ETV5 was associated with ESCC tumor staging and ESCC prognosis clinically. ETV5 promoted metastasis of ESCC by activating MMPs through augmenting the transcription of SKA1 and TRPV2. ETV5 was likely to be a novel oncogene and therapeutic target in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica/genética , Pronóstico , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factores de Transcripción/genética
13.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31719194

RESUMEN

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Asunto(s)
Metionina/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Cloraminas/química , Escherichia coli/genética , Calor , Humanos , Peróxido de Hidrógeno/química , Macrófagos , Metionina/química , Mutación , Oxidantes/química , Oxidación-Reducción , Técnicas de Placa-Clamp , Fagocitosis , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/genética , Compuestos de Tosilo/química
14.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628181

RESUMEN

Alzheimer's disease (AD) is associated with the accumulation and aggregation of amyloid in the brain. The cation channel TRPV2 may mediate the pathological changes in mild cognitive impairment. A high-affinity agonist of TRPV2 named cannabidiol is one of the candidate drugs for AD. However, the molecular mechanism of cannabidiol via TRPV2 in AD remains unknown. The present study investigated whether cannabidiol enhances the phagocytosis and clearance of microglial Aß via the TRPV2 channel. We used a human dataset, mouse primary neuron and microglia cultures, and AD model mice to evaluate TRPV2 expression and the ability of microglial amyloid-ß phagocytosis in vivo and in vitro. The results revealed that TRPV2 expression was reduced in the cortex and hippocampus of AD model mice and AD patients. Cannabidiol enhanced microglial amyloid-ß phagocytosis through TRPV2 activation, which increased the mRNA expression of the phagocytosis-related receptors, but knockdown of TRPV2 or Trem2 rescued the expression. TRPV2-mediated effects were also dependent on PDK1/Akt signaling, a pathway in which autophagy was indispensable. Furthermore, cannabidiol treatment successfully attenuated neuroinflammation while simultaneously improving mitochondrial function and ATP production via TRPV2 activation. Therefore, TRPV2 is proposed as a potential therapeutic target in AD, while CBD is a promising drug candidate for AD.


Asunto(s)
Enfermedad de Alzheimer , Canales de Calcio , Cannabidiol , Canales Catiónicos TRPV , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Cannabidiol/farmacología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Fagocitosis , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36292998

RESUMEN

Cannabinoids, used for centuries for recreational and medical purposes, have potential therapeutic value in stroke treatment. Cannabidiol (CBD), a non-psychoactive compound and partial agonist of TRPV2 channels, is efficacious in many neurological disorders. We investigated the effects of CBD or Δ9-tetrahydrocannabinol (THC) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Neuronal TRPV2 expression decreased after OGD, but it increased in activated, phagocytic microglia. CBD increased TRPV2 expression, decreased microglia phagocytosis, and increased rod microglia after OGD. THC had effects contrary to those of CBD. Our results show that cannabinoids have different effects in ischemia. CBD showed neuroprotective effects, mediated, at least in part, by TRPV2 channels, since the TRPV2 antagonist tranilast blocked them, while THC worsened the neurodegeneration caused by ischemia. In conclusion, our results suggest that different cannabinoid molecules play different roles in the mechanisms of post-ischemic neuronal death. These different effects of cannabinoid observed in our experiments caution against the indiscriminate use of cannabis or cannabinoid preparations for recreational or therapeutic use. It was observed that the positive effects of CBD may be counteracted by the negative effects caused by high levels of THC.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Fármacos Neuroprotectores , Animales , Ratas , Cannabidiol/farmacología , Cannabidiol/metabolismo , Dronabinol/farmacología , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Cannabis/metabolismo , Cannabinoides/farmacología , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Glucosa/metabolismo , Oxígeno/metabolismo , Canales Catiónicos TRPV/metabolismo
16.
FASEB J ; 34(9): 12338-12353, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32729134

RESUMEN

Thermosensitive transient receptor potential vanilloid 2 (thermoTRPV2) is a nonselective Ca2+ -permeable cation channel broadly expressed, and is implicated in the pathology of diseases such as diabetes and pancreatitis. However, the physiological and pharmacological functions of TRPV2 channels have not been extensively investigated because of the absence of specific modulators. In this study, we report a pair of natural coumarin derivative enantiomers (-)-murraxocin (B304-1) and (+)-murraxocin (B304-2) from Murraya exotica for their selective inhibition of TRPV2 channels expressed in HEK293 cells and native TRPV2 currents in differentiated brown adipocytes. Whole-cell patch clamp recordings confirmed the enantiomers B304-1 and B304-2 could selectively inhibit the agonist mediated activation of TRPV2 current with IC50 values of 22.2 ± 7.8 µM and 3.7 ± 0.7 µM, respectively. Molecular docking and site-directed mutagenesis revealed a key residue I600 of TRPV2 critical for the binding of the enantiomers. Furthermore, B304-1 and B304-2 significantly reversed TRPV2 agonist-induced inhibition of mouse brown adipocyte differentiation. Taken together, our identification of two natural coumarin enantiomers provides valuable tools and chemical leads for further elucidation of TRPV2 channel function, and pharmacological modulation of thermoTRPV2 in brown adipocytes may represent a new therapeutic strategy for treatment of energy imbalance or metabolic disorders.


Asunto(s)
Cumarinas/farmacología , Murraya/química , Canales Catiónicos TRPV/antagonistas & inhibidores , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Raíces de Plantas/química , Estereoisomerismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/fisiología
17.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946947

RESUMEN

The cation channel TRPV2 is known to be expressed by murine macrophages and is crucially involved in their functionality. Macrophages are frequent cells of the mouse testis, an immune-privileged and steroid-producing organ. TRPV2 expression by testicular macrophages and possible changes associated with age or inflammation have not been investigated yet. Therefore, we studied testes of young adult and old wild-type (WT) and AROM+ mice, i.e., transgenic mice overexpressing aromatase. In these animals, inflammatory changes are described in the testis, involving active macrophages, which increase with age. This is associated with impaired spermatogenesis and therefore AROM+ mice are a model for male infertility associated with sterile inflammation. In WT animals, testicular TRPV2 expression was mapped to interstitial CD206+ and peritubular MHC II+ macrophages, with higher levels in CD206+ cells. Expression levels of TRPV2 and most macrophage markers did not increase significantly in old mice, with the exception of CD206. As the number of TRPV2+ testicular macrophages was relatively small, their possible involvement in testicular functions and in aging in WT mice remains to be further studied. In AROM+ testis, TRPV2 was readily detected and levels increased significantly with age, together with macrophage markers and TNF-α. TRPV2 co-localized with F4/80 in macrophages and further studies showed that TRPV2 is mainly expressed by unusual CD206+MHC II+ macrophages, arising in the testis of these animals. Rescue experiments (aromatase inhibitor treatment and crossing with ERαKO mice) restored the testicular phenotype and also abolished the elevated expression of TRPV2, macrophage and inflammation markers. This suggests that TRPV2+ macrophages of the testis are part of an inflammatory cascade initiated by an altered sex hormone balance in AROM+ mice. The changes in testis are distinct from the described alterations in other organs of AROM+, such as prostate and spleen. When we monitored TRPV2 levels in another immune-privileged organ, namely the brain, we found that levels of TRPV2 were not elevated in AROM+ and remained stable during aging. In the adrenal, which similar to the testis produces steroids, we found slight, albeit not significant increases in TRPV2 in both AROM+ and WT mice, which were associated with age. Thus, the changes in the testis are specific for this organ.


Asunto(s)
Canales de Calcio/fisiología , Macrófagos/metabolismo , Orquitis/metabolismo , Canales Catiónicos TRPV/fisiología , Testículo/metabolismo , Glándulas Suprarrenales/metabolismo , Factores de Edad , Animales , Aromatasa/genética , Encéfalo/metabolismo , Canales de Calcio/biosíntesis , Canales de Calcio/genética , Modelos Animales de Enfermedad , Genotipo , Infertilidad Masculina/metabolismo , Lectinas Tipo C/análisis , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/análisis , Ratones , Ratones Transgénicos , NADPH Oxidasa 2/biosíntesis , NADPH Oxidasa 2/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Superficie Celular/análisis , Espermatogénesis , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/genética , Factor de Necrosis Tumoral alfa/biosíntesis
18.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575932

RESUMEN

(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.


Asunto(s)
Cannabidiol/farmacología , Dronabinol/farmacología , Glucosa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Animales , Cannabis/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas
19.
Adv Exp Med Biol ; 1131: 505-517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646523

RESUMEN

Cancer cells acquire the ability to modify the calcium signaling network by altering the expression and functions of cation channels, pumps or transporters. Calcium signaling pathways are involved in proliferation, angiogenesis, invasion, immune evasion, disruption of cell death pathways, ECM remodelling, epithelial-mesenchymal transition (EMT) and drug resistance. Among cation channels, a pivotal role is played by the Transient Receptor Potential non-selective cation-permeable receptors localized in plasma membrane, endoplasmic reticulum, mitochondria and lysosomes. Several findings indicate that the dysregulation in calcium signaling induced by TRP channels is responsible for cancer growth, metastasis and chemoresistance. Drug resistance represents a major limitation in the application of current therapeutic regimens and several efforts are spent to overcome it. Here we describe the ability of Transient Receptor Potential Channels to modify, by altering the intracellular calcium influx, the cancer cell sensitivity to chemotherapeutic drugs.


Asunto(s)
Señalización del Calcio , Neoplasias , Canales de Potencial de Receptor Transitorio , Antineoplásicos/uso terapéutico , Calcio/metabolismo , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
20.
Pediatr Cardiol ; 41(8): 1675-1688, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32770262

RESUMEN

Subjects with functionally univentricular circulation who have completed staged single ventricle palliation, with the final stage culminating in the Fontan procedure, are often living into adulthood. However, high morbidity and mortality remain prevalent in these patients, as diastolic and systolic dysfunction of the single systemic ventricle are linked to Fontan circulatory failure. We presently investigated the effects of probenecid in post-Fontan patients. Used for decades for the treatment of gout, probenecid has been shown in recent years to positively influence cardiac function via effects on the Transient Receptor Potential Vanilloid 2 (TRPV2) channel in cardiomyocytes. Indeed, we observed that probenecid improved cardiac function and exercise performance in patients with a functionally univentricular circulation. This was consistent with our findings from a retrospective cohort of patients with single ventricle physiology where TRPV2 expression was increased. Experiments in isolated cardiomyocytes associated these positive actions to augmentation of diastolic calcium homeostasis.


Asunto(s)
Agonistas de los Canales de Calcio/uso terapéutico , Procedimiento de Fontan/métodos , Cardiopatías Congénitas/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Probenecid/uso terapéutico , Administración Oral , Adolescente , Adulto , Calcio/metabolismo , Niño , Prueba de Esfuerzo , Femenino , Cardiopatías Congénitas/cirugía , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/cirugía , Homeostasis/efectos de los fármacos , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Estudios Retrospectivos , Canales Catiónicos TRPV/metabolismo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda