RESUMEN
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Asunto(s)
Inmunoterapia , Neoplasias , Receptores Tipo II del Factor de Necrosis Tumoral , Humanos , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Microambiente Tumoral/inmunología , Terapia Molecular Dirigida , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Asunto(s)
Leucemia Mieloide Aguda , Medicina de Precisión , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Medicina de Precisión/métodos , Inmunoterapia/métodos , Terapia Molecular Dirigida/métodosRESUMEN
The occurrence rate of primary liver cancer in malignant tumors ranks sixth in the world, and the mortality rate ranks third, with a poor prognosis and a five-year survival rate of less than 5%. Most patients with liver cancer in China are found to be in the intermediate and advanced stages, and a targeted immunotherapy combination has become the main treatment option. However, many patients have underlying liver lesions, and their liver function cannot meet the requirements of targeted immunotherapy, which directly affects the treatment of liver cancer patients. Therefore, it is very important to optimize the patient's liver function in a timely manner so as to obtain the opportunity for anti-tumor therapy. This article reviews the current status and response strategies before liver injury related to targeted immune therapy in patients with primary liver cancer.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Inmunoterapia , ChinaRESUMEN
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.