Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.959
Filtrar
Más filtros

Publication year range
1.
Trends Biochem Sci ; 47(8): 631-634, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466035

RESUMEN

Written and oral communication are skills graduate students often request training in and supervisors often bemoan the lack of. We describe an approach to address this training gap using an instructional model that integrates experienced research-active PIs with an expert in the study and teaching of technical writing.


Asunto(s)
Comunicación , Escritura , Humanos
2.
Proc Natl Acad Sci U S A ; 120(47): e2206227120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956277

RESUMEN

Addressing sustainability challenges requires fundamental transformations in electricity, heat, mobility, and agri-food systems. To do so, research and policy efforts tend to emphasise the importance of fostering new, more sustainable systems through innovation. Instead, this paper focuses explicitly on the "flipside" of innovation: The fate of established systems faced with their potential destabilisation and decline. It is argued that any transition in consumption-production systems involves a combination of innovation (something new emerges) and destabilisation (something old is being challenged). To examine the role of destabilisation, decline, and phase-out for policy and practice efforts, this paper advances conceptual and empirical contributions. Conceptually, it elaborates a framework based on three interacting destabilisation mechanisms: The build-up of pressures, strategic responses by central system actors, and changing commitments to reproductive activities. Empirically, it draws on the historic dismantling of electric tramways in France. The decline of the tramway in France followed a gradual erosion pattern resulting from the long-term degradation of technical, political, and economic conditions, which was accelerated by a relatively rapid phase-out programme. A discussion section offers insights on the temporality of destabilisation, the context of phase-out decisions, and the interaction of destabilisation and innovation processes.

3.
Plant J ; 119(1): 617-631, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647454

RESUMEN

Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.


Asunto(s)
Vectores Genéticos , Proteínas Fluorescentes Verdes , Ensayos Analíticos de Alto Rendimiento , Nicotiana , Enfermedades de las Plantas , Ralstonia solanacearum , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/fisiología , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/patogenicidad , Nicotiana/microbiología , Nicotiana/genética , Nicotiana/virología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/genética , Ralstonia solanacearum/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Enfermedades de las Plantas/microbiología , Vectores Genéticos/genética , Virulencia , Agrobacterium/genética , Inmunidad de la Planta/genética , Interacciones Huésped-Patógeno/genética
4.
Plant J ; 119(2): 1158-1172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713824

RESUMEN

CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.


Asunto(s)
Arabidopsis , Sistemas CRISPR-Cas , Edición Génica , Mutagénesis , Arabidopsis/genética , Edición Génica/métodos , Regiones Promotoras Genéticas/genética , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , Mutación , Técnicas de Inactivación de Genes/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
5.
Plant J ; 117(5): 1604-1613, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038993

RESUMEN

Sorghum is an important crop for food, forage, wine and biofuel production. To enhance its transformation efficiency without negative developmental by-effects, we investigated the impact of GRF4-GIF1 chimaera and GRF5 on sorghum transformation. Both GRF4-GIF1 and GRF5 effectively improved the transformation efficiency of sorghum and accelerated the transformation process of sorghum to less than 2 months which was not observed when using BBM-WUS. As agrobacterium  effectors increase the ability of T-DNA transfer into plant cells, we checked whether ternary vector system can additively enhance sorghum transformation. The combination of GRF4-GIF1 with helper plasmid pVS1-VIR2 achieved the highest transformation efficiency, reaching 38.28%, which is 7.71-fold of the original method. Compared with BBM-WUS, overexpressing GRF4-GIF1 caused no noticeable growth defects in sorghum. We further developed a sorghum CRISPR/Cas9 gene-editing tool based on this GRF4-GIF1/ternary vector system, which achieved an average gene mutation efficiency of 41.36%, and null mutants were created in the T0 generation.


Asunto(s)
Sorghum , Sorghum/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética , Edición Génica/métodos , Agrobacterium/genética , Grano Comestible/genética , Sistemas CRISPR-Cas
6.
Plant J ; 117(3): 956-971, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937773

RESUMEN

Anionic phospholipids (PS, PA, PI, PIPs) are low-abundant phospholipids with impactful functions in cell signaling, membrane trafficking and cell differentiation processes. They can be quickly metabolized and can transiently accumulate at defined spots within the cell or an organ to respond to physiological or environmental stimuli. As even a small change in their composition profile will produce a significant effect on biological processes, it is crucial to develop a sensitive and optimized analytical method to accurately detect and quantify them. While thin-layer chromatography (TLC) separation coupled with gas chromatography (GC) detection methods already exist, they do not allow for precise, sensitive, and accurate quantification of all anionic phospholipid species. Here we developed a method based on high-performance liquid chromatography (HPLC) combined with two-dimensional mass spectrometry (MS2 ) by MRM mode to detect and quantify all molecular species and classes of anionic phospholipids in one shot. This method is based on a derivatization step by methylation that greatly enhances the ionization, the separation of each peak, the peak resolution as well as the limit of detection and quantification for each individual molecular species, and more particularly for PA and PS. Our method universally works in various plant samples. Remarkably, we identified that PS is enriched with very long chain fatty acids in the roots but not in aerial organs of Arabidopsis thaliana. Our work thus paves the way for new studies on how the composition of anionic lipids is finely tuned during plant development and environmental responses.


Asunto(s)
Arabidopsis , Fosfolípidos , Fosfolípidos/metabolismo , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Arabidopsis/metabolismo
7.
Plant J ; 120(1): 406-419, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38976238

RESUMEN

Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.


Asunto(s)
Minería de Datos , Filogenia , Plantas/genética , Plantas/metabolismo , Plantas/clasificación , Genoma de Planta/genética , Betalaínas/metabolismo , Caryophyllales/genética , Caryophyllales/metabolismo
8.
Plant J ; 118(5): 1689-1698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38310596

RESUMEN

Confocal microscopy has greatly aided our understanding of the major cellular processes and trafficking pathways responsible for plant growth and development. However, a drawback of these studies is that they often rely on the manual analysis of a vast number of images, which is time-consuming, error-prone, and subject to bias. To overcome these limitations, we developed Dot Scanner, a Python program for analyzing the densities, lifetimes, and displacements of fluorescently tagged particles in an unbiased, automated, and efficient manner. Dot Scanner was validated by performing side-by-side analysis in Fiji-ImageJ of particles involved in cellulose biosynthesis. We found that the particle densities and lifetimes were comparable in both Dot Scanner and Fiji-ImageJ, verifying the accuracy of Dot Scanner. Dot Scanner largely outperforms Fiji-ImageJ, since it suffers far less selection bias when calculating particle lifetimes and is much more efficient at distinguishing between weak signals and background signal caused by bleaching. Not only does Dot Scanner obtain much more robust results, but it is a highly efficient program, since it automates much of the analyses, shortening workflow durations from weeks to minutes. This free and accessible program will be a highly advantageous tool for analyzing live-cell imaging in plants.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Células Vegetales
9.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459738

RESUMEN

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Genotipaje/métodos , Cartilla de ADN/genética , Sitios de Carácter Cuantitativo/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeo Cromosómico , ADN de Plantas/genética , Glycine max/genética , Biblioteca de Genes , Polimorfismo Genético , Productos Agrícolas/genética , Genotipo
10.
Plant J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259496

RESUMEN

Genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) has been widely used to explore genetic controls of phenotypic traits. Alternatively, GWAS can use counts of substrings of length k from longer sequencing reads, k-mers, as genotyping data. Using maize cob and kernel color traits, we demonstrated that k-mer GWAS can effectively identify associated k-mers. Co-expression analysis of kernel color k-mers and genes directly found k-mers from known causal genes. Analyzing complex traits of kernel oil and leaf angle resulted in k-mers from both known and candidate genes. A gene encoding a MADS transcription factor was functionally validated by showing that ectopic expression of the gene led to less upright leaves. Evolution analysis revealed most k-mers positively correlated with kernel oil were strongly selected against in maize populations, while most k-mers for upright leaf angle were positively selected. In addition, genomic prediction of kernel oil, leaf angle, and flowering time using k-mer data resulted in a similarly high prediction accuracy to the standard SNP-based method. Collectively, we showed k-mer GWAS is a powerful approach for identifying trait-associated genetic elements. Further, our results demonstrated the bridging role of k-mers for data integration and functional gene discovery.

11.
Plant J ; 119(3): 1643-1658, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761168

RESUMEN

Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout. However, the existing pyridine nucleotides genetically encoded fluorescent biosensors are either sensitive to pH change or slow in dissociation rate. Herein, we employed the biosensors which generate readouts that are pH stable for in planta measurement of NADH/NAD+ ratio and NADPH level. We generated transgenic Arabidopsis lines that express these biosensors in plastid stroma and cytosol of whole plants and pollen tubes under the control of CaMV 35S and LAT52 promoters, respectively. These transgenic biosensor lines allow us to monitor real-time dynamic changes in NADH/NAD+ ratio and NADPH level in the plastids and cytosol of various plant tissues, including pollen tubes, root hairs, and mesophyll cells, using a variety of fluorescent instruments. We anticipate that these valuable transgenic lines may allow improvements in plant redox biology studies.


Asunto(s)
Arabidopsis , Técnicas Biosensibles , NADP , NAD , Plantas Modificadas Genéticamente , Técnicas Biosensibles/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , NADP/metabolismo , NAD/metabolismo , Citosol/metabolismo , Oxidación-Reducción , Plastidios/metabolismo , Plastidios/genética , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Concentración de Iones de Hidrógeno
12.
Plant J ; 118(4): 927-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38525669

RESUMEN

Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biosensibles , Giberelinas , Protoplastos , Transducción de Señal , Giberelinas/metabolismo , Técnicas Biosensibles/métodos , Arabidopsis/metabolismo , Arabidopsis/genética , Protoplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
13.
Plant J ; 119(5): 2564-2577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032106

RESUMEN

RNA-guided endonucleases originating from the bacterial CRISPR/Cas system are a versatile tool for targeted gene editing. To determine the functional relevance of a gene of interest, deletion of the entire open reading frame (ORF) by two independent double-strand breaks (DSBs) is particularly attractive. This strategy greatly benefits from high editing efficiency, which is strongly influenced by the Cas endonuclease version used. We developed two reporter switch-on assays, for quantitative comparison and optimization of Cas constructs. The assays are based on four components: (i) A reporter gene, the mRNA of which carries a hairpin (HP) loop targeted by (ii) the endoribonuclease Csy4. Cleavage of the mRNA at the HP loop by Csy4 abolishes the translation of the reporter. Csy4 was used as the target for full deletion. (iii) A Cas system targeting sites flanking the Csy4 ORF with a 20-bp spacer either side to preferentially detect full-deletion events. Loss of functional Csy4 would lead to reporter gene expression, allowing indirect quantification of Cas-mediated deletion events. (iv) A reference gene for normalization. We tested these assays on Nicotiana benthamiana leaves and Lotus japonicus calli induced on hypocotyl sections, using Firefly luciferase and mCitrine as reporter genes and Renilla luciferase and hygromycin phosphotransferase II as reference genes, respectively. We observed a >90% correlation between reporter expression and full Csy4 deletion events, demonstrating the validity of these assays. The principle of using the Csy4-HP module as Cas target should be applicable to other editing goals including single DSBs in all organisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Nicotiana/genética , Genes Reporteros
14.
Plant J ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222478

RESUMEN

Plant hormones are chemical signals governing almost every aspect of a plant's life cycle and responses to environmental cues. They are enmeshed within complex signaling networks that can only be deciphered by using broad-scale analytical methods to capture information about several plant hormone classes simultaneously. Methods used for this purpose are all based on reversed-phase (RP) liquid chromatography and mass spectrometric detection. Hydrophilic interaction chromatography (HILIC) is an alternative chromatographic method that performs well in analyses of biological samples. We therefore developed and validated a HILIC method for broad-scale plant hormone analysis including a rapid sample preparation procedure; moreover, derivatization or fractionation is not required. The method enables plant hormone screening focused on polar and moderately polar analytes including cytokinins, auxins, jasmonates, abscisic acid and its metabolites, salicylates, indoleamines (melatonin), and 1-aminocyclopropane-1-carboxylic acid (ACC), for a total of 45 analytes. Importantly, the major pitfalls of ACC analysis have been addressed. Furthermore, HILIC provides orthogonal selectivity to conventional RP methods and displays greater sensitivity, resulting in lower limits of quantification. However, it is less robust, so procedures to increase its reproducibility were established. The method's potential is demonstrated in a case study by employing an approach combining hormonal analysis with phenomics to examine responses of three Arabidopsis ecotypes toward three abiotic stress treatments: salinity, low nutrient availability, and their combination. The case study showcases the value of the simultaneous determination of several plant hormone classes coupled with phenomics data when unraveling processes involving complex cross-talk under diverse plant-environment interactions.

15.
Plant J ; 119(4): 2116-2132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923048

RESUMEN

Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.


Asunto(s)
Vectores Genéticos , Plantas Modificadas Genéticamente , Transformación Genética , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Edición Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ADN Bacteriano/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Agrobacterium tumefaciens/genética , Plásmidos/genética
16.
Plant J ; 118(2): 584-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141174

RESUMEN

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Asunto(s)
Germinación , Plantones , Fenotipo , Germinación/fisiología , Semillas , Procesamiento de Imagen Asistido por Computador
17.
Plant J ; 118(1): 7-23, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38261530

RESUMEN

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilación , Peroxisomas/metabolismo , Proteínas de la Membrana/metabolismo
18.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36759336

RESUMEN

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub: https://github.com/victorykobets/HiConfidence.


Asunto(s)
Drosophila melanogaster , Genoma , Animales , Drosophila melanogaster/genética , Cromatina/genética , Cromosomas , Sesgo
19.
Plant J ; 115(4): 1151-1162, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37265080

RESUMEN

The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Genoma de Plastidios , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocondrias/metabolismo , Plastidios/genética , Plastidios/metabolismo , Genoma de Plastidios/genética
20.
Plant J ; 113(1): 186-204, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403224

RESUMEN

Transient transgenic expression accelerates pharming and facilitates protein studies in plants. One embodiment of the approach involves leaf infiltration of Agrobacterium strains whose T-DNA is engineered with the gene(s) of interest. However, gene expression during 'agro-infiltration' is intrinsically and universally impeded by the onset of post-transcriptional gene silencing (PTGS). Nearly 20 years ago, a simple method was developed, whereby co-expression of the tombusvirus-encoded P19 protein suppresses PTGS and thus enhances transient gene expression. Yet, how PTGS is activated and suppressed by P19 during the process has remained unclear to date. Here, we address these intertwined questions in a manner also rationalizing how vastly increased protein yields are achieved using a minimal viral replicon as a transient gene expression vector. We also explore, in side-by-side analyses, why some proteins do not accumulate to the expected high levels in the assay, despite vastly increased mRNA levels. We validate that enhanced co-expression of multiple constructs is achieved within the same transformed cells, and illustrate how the P19 system allows rapid protein purification for optimized downstream in vitro applications. Finally, we assess the suitability of the P19 system for subcellular localization studies - an originally unanticipated, yet increasingly popular application - and uncover shortcomings of this specific implement. In revisiting the P19 system using contemporary knowledge, this study sheds light onto its hitherto poorly understood mechanisms while further illustrating its versatility but also some of its limits.


Asunto(s)
Agrobacterium , Hojas de la Planta , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Fluorescentes Verdes/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nicotiana/metabolismo , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda