Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Biochem Cell Biol ; 102(2): 127-134, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988705

RESUMEN

Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Temozolomida/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Ceramidas/uso terapéutico , Resistencia a Antineoplásicos
2.
Cell Biol Int ; 48(2): 143-153, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798941

RESUMEN

Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKß phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKß and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKß-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.


Asunto(s)
Glioma , FN-kappa B , Ratones , Animales , Humanos , Temozolomida/farmacología , FN-kappa B/metabolismo , Magnesio , Quinasa I-kappa B/metabolismo , Resistencia a Antineoplásicos , Ratones Desnudos , Glioma/metabolismo , Fosfoproteínas Fosfatasas , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Proteína Fosfatasa 2C
3.
Cancer Cell Int ; 23(1): 49, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932402

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS: Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and É£H2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS: Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION: TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.

4.
Acta Pharmacol Sin ; 44(3): 670-679, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36100765

RESUMEN

Temozolomide (TMZ) has been used as standard-of-care for glioblastoma multiforme (GBM), but the resistance to TMZ develops quickly and frequently. Thus, more studies are needed to elucidate the resistance mechanisms. In the current study, we investigated the relationship among the three important phenotypes, namely TMZ-resistance, cell shape and lipid metabolism, in GBM cells. We first observed the distinct difference in cell shapes between TMZ-sensitive (U87) and resistant (U87R) GBM cells. We then conducted NMR-based lipid metabolomics, which revealed a significant increase in cholesterol and fatty acid synthesis as well as lower lipid unsaturation in U87R cells. Consistent with the lipid changes, U87R cells exhibited significantly lower membrane fluidity. The transcriptomic analysis demonstrated that lipid synthesis pathways through SREBP were upregulated in U87R cells, which was confirmed at the protein level. Fatostatin, an SREBP inhibitor, and other lipid pathway inhibitors (C75, TOFA) exhibited similar or more potent inhibition on U87R cells compared to sensitive U87 cells. The lower lipid unsaturation ratio, membrane fluidity and higher fatostatin sensitivity were all recapitulated in patient-derived TMZ-resistant primary cells. The observed ternary relationship among cell shape, lipid composition, and TMZ-resistance may be applicable to other drug-resistance cases. SREBP and fatostatin are suggested as a promising target-therapeutic agent pair for drug-resistant glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Forma de la Célula , Metabolismo de los Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Resistencia a Antineoplásicos , Lípidos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Antineoplásicos Alquilantes/farmacología
5.
J Nanobiotechnology ; 21(1): 45, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755314

RESUMEN

Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Glioblastoma , MicroARNs , Humanos , Animales , Ratones , Temozolomida/farmacología , Glioblastoma/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto , Glicoproteínas/metabolismo , Glicoproteínas/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958662

RESUMEN

Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Fenotipo , Genómica , Resistencia a Antineoplásicos/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica
7.
Mol Biol (Mosk) ; 57(6): 31-40, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38062972

RESUMEN

Temozolomide resistance is a major cause of recurrence and poor prognosis in neuroglioma. Recently, growing evidence has suggested that mitophagy is involved in drug resistance in various tumor types. However, the role and molecular mechanisms of mitophagy in temozolomide resistance in glioma remain unclear. In this study, mitophagy levels in temozolomide-resistant and -sensitive cell lines were evaluated. The mechanisms underlying the regulation of mitophagy were explored through RNA sequencing, and the roles of differentially expressed genes in mitophagy and temozolomide resistance were investigated. We found that mitophagy promotes temozolomide resistance in glioma. Specifically, small ubiquitin-like modifier specific protease 6 (SENP6) promoted temozolomide resistance in glioma by inducing mitophagy. Protein-protein interactions between SENP6 and the mitophagy executive protein PTEN-induced kinase 1 (PINK1) resulted in a reduction in small ubiquitin-like modifier 2 (SUMO2)ylation of PINK1, thereby enhancing mitophagy. Our study demonstrates that by inducing mitophagy, the interaction of SENP6 with PINK1 promotes temozolomide resistance in glioblastoma. Therefore, targeting SENP6 or directly regulating mitophagy could be a potential and novel therapeutic target for reversing temozolomide resistance in glioma.


Asunto(s)
Resistencia a Antineoplásicos , Glioma , Mitofagia , Humanos , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Temozolomida/farmacología , Temozolomida/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/metabolismo , Resistencia a Antineoplásicos/genética
8.
Cell Mol Neurobiol ; 42(3): 695-708, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32897512

RESUMEN

Many studies have found that the dysregulation of long noncoding RNA (lncRNA) contributed to cancer initiation, progression, and recurrence via multiple signaling pathways. However, the underlying mechanisms of lncRNA in temozolomide (TMZ)-resistant gliomas were not well understood, hindering the improvement of TMZ-based therapies. The present study demonstrated that the lncRNA KCNQ1OT1 increased in TMZ-resistant glioma cells compared to the TMZ-sensitive cells. The introduction of KCNQ1OT1 promoted cell viability, clonogenicity, and rhodamine 123 efflux while hampering TMZ-induced apoptosis. Moreover, KCNQ1OT1 directly sponged miR-761, which decreased in TMZ-resistant sublines. The overexpression of miR-761 attenuated cell viability and clonogenicity, while triggering apoptosis and rhodamine 123 accumulation post-TMZ exposure, leading to a response to TMZ. The interaction between miR-761 and 3'-untranslated region of PIM1 attenuated PIM1-mediated signaling cascades. Furthermore, the knockdown of KCNQ1OT1 augmented the TMZ-induced tumor regression in TMZ-resistant U251 mouse models. Briefly, the present study evaluated that KCNQ1OT1 conferred TMZ resistance by releasing PIM1 expression from miR-761, resulting in the upregulation of PIM-mediated MDR1, c-Myc, and Survivin. The present findings demonstrated that the interplay of KCNQ1OT1: miR-761: PIM1 regulated chemoresistance in gliomas and provided a promising therapeutic target for TMZ-resistant glioma patients.


Asunto(s)
Resistencia a Antineoplásicos , Glioma , MicroARNs , Proteínas Proto-Oncogénicas c-pim-1 , ARN Largo no Codificante , Temozolomida , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Ratones , MicroARNs/genética , Canales de Potasio con Entrada de Voltaje , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Largo no Codificante/genética , Temozolomida/farmacología , Temozolomida/uso terapéutico
9.
Neuropathology ; 42(5): 430-446, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35701983

RESUMEN

Glioma is the most common malignant tumor in the central nervous system and has a high mortality rate. Temozolomide (TMZ) is a widely used chemotherapeutic drug for glioma. NDC80 kinetochore complex (NUF2) is suggested to play a regulatory role in different cancers, but its specific function and mechanism in glioblastoma TMZ resistance remain unknown. NUF2, assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR), was highly expressed in glioma cell lines. TMZ was used to treat cells to establish a TMZ-resistant cell line. The potential functions of NUF2 in glioma were assessed using cell counting kit-8 (CCK-8) assays, colony formation assays, 5-Ethynyl-2'-deoxyuridine (EdU) assays, flow cytometry, Western blotting, and a tumor xenograft model. The results showed that NUF2 knockdown attenuated malignant phenotypes of TMZ-resistant cells and prevented tumor growth. Mechanistically, as luciferase reporter assays and chromatin immunoprecipitation (ChIP) as showed, Fox transcription factor M1 (FOXM1) had binding sites on the NUF2 promoter. Rescue assays demonstrated that FOXM1 upregulation counteracted the inhibitory effects of NUF2 depletion on the malignancies of TMZ-resistant cells. This study demonstrates that FOXM1-activated NUF2 promotes TMZ to human glioma cells by regulating proliferation, apoptosis, and autophagy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis , Autofagia , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/farmacología , Factores de Transcripción Forkhead/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico
10.
Cancer Sci ; 112(11): 4736-4747, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34536314

RESUMEN

Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ-resistant GBM (TMZ-R-GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ-R-GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ-R-GBM. As a model of TMZ-R-GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ-R-cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ-R-cells after the administration of each drug, the antitumor effects of TMZ against TMZ-R-cells were significantly reduced compared to those of parental cells, whereas CCNU and ACNU demonstrated efficient antitumor effects on TMZ-R-cells as well as parental cells. It was also demonstrated that TMZ resistance of TMZ-R-cells was regulated at the initiation of DNA damage response. Furthermore, survival in mice was significantly prolonged by systemic treatment with CCNU or ACNU but not TMZ after implantation of TMZ-R-cells. These findings suggest that CCNU or ACNU may serve as a therapeutic agent in salvage treatment against TMZ-R-GBM.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Lomustina/uso terapéutico , Nimustina/uso terapéutico , Temozolomida/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Inyecciones Intraperitoneales , Lomustina/administración & dosificación , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nimustina/administración & dosificación , Terapia Recuperativa/métodos , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Med ; 27(1): 28, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765907

RESUMEN

BACKGROUND: Glioblastoma is the most common primary brain tumor and remains uniformly fatal, highlighting the dire need for developing effective therapeutics. Significant intra- and inter-tumor heterogeneity and inadequate delivery of therapeutics across blood-brain barrier continue to be significant impediments towards developing therapies which can significantly enhance survival. We hypothesize that microRNAs have the potential to serve as effective therapeutics for glioblastoma as they modulate the activity of multiple signaling pathways, and hence can counteract heterogeneity if successfully delivered. METHODS: Using a computational approach, we identified microRNA-34a as a microRNA that maximally reduces the activation status of the three core signaling networks (the receptor tyrosine kinase, p53 and Rb networks) that have been found to be deregulated in most glioblastoma tumors. Glioblastoma cultures were transfected with microRNA-34a or control microRNA to assess biological function and therapeutic potential in vitro. Nanocells were derived from genetically modified bacteria and loaded with microRNA-34a for intravenous administration to orthotopic patient-derived glioblastoma xenografts in mice. RESULTS: Overexpression of microRNA-34a strongly reduced the activation status of the three core signaling networks. microRNA-34a transfection also inhibited the survival of multiple established glioblastoma cell lines, as well as primary patient-derived xenograft cultures representing the proneural, mesenchymal and classical subtypes. Transfection of microRNA-34a enhanced temozolomide (TMZ) response in in vitro cultures of glioblastoma cells with primary TMZ sensitivity, primary TMZ resistance and acquired TMZ resistance. Mechanistically, microRNA-34a downregulated multiple therapeutic resistance genes which are associated with worse survival in glioblastoma patients and are enriched in specific tumor spatial compartments. Importantly, intravenous administration of nanocells carrying miR-34a and targeted to epidermal growth factor receptor (EGFR) strongly enhanced TMZ sensitivity in an orthotopic patient-derived xenograft mouse model of glioblastoma. CONCLUSIONS: Targeted bacterially-derived nanocells are an effective vehicle for the delivery of microRNA-34a to glioblastoma tumors. microRNA-34a inhibits survival and strongly sensitizes a wide range of glioblastoma cell cultures to TMZ, suggesting that combination therapy of TMZ with microRNA-34a loaded nanocells may serve as a novel therapeutic approach for the treatment of glioblastoma tumors.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , MicroARNs/administración & dosificación , Nanoestructuras/administración & dosificación , Temozolomida/uso terapéutico , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Humanos , Ratones Desnudos
12.
J Biomed Sci ; 28(1): 18, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685470

RESUMEN

Glioblastoma is the most common primary malignant brain tumor that is usually considered fatal even with treatment. This is often a result for tumor to develop resistance. Regarding the standard chemotherapy, the alkylating agent temozolomide is effective in disease control but the recurrence will still occur eventually. The mechanism of the resistance is various, and differs in terms of innate or acquired. To date, aberrations in O6-methylguanine-DNA methyltransferase are the clear factor that determines drug susceptibility. Alterations of the other DNA damage repair genes such as DNA mismatch repair genes are also known to affect the drug effect. Together these genes have roles in the innate resistance, but are not sufficient for explaining the mechanism leading to acquired resistance. Recent identification of specific cellular subsets with features of stem-like cells may have role in this process. The glioma stem-like cells are known for its superior ability in withstanding the drug-induced cytotoxicity, and giving the chance to repopulate the tumor. The mechanism is complicated to administrate cellular protection, such as the enhancing ability against reactive oxygen species and altering energy metabolism, the important steps to survive. In this review, we discuss the possible mechanism for these specific cellular subsets to evade cancer treatment, and the possible impact to the following treatment courses. In addition, we also discuss the possibility that can overcome this obstacle.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Temozolomida/farmacología , Animales , Glioblastoma/tratamiento farmacológico , Humanos
13.
J Pathol ; 252(3): 304-316, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32725633

RESUMEN

Resistance of glioblastoma to the chemotherapeutic compound temozolomide is associated with the presence of glioblastoma stem cells in glioblastoma and is a key obstacle for the poor prognosis of glioblastoma. Here, we show that phospholipase D1 is elevated in CD44High glioblastoma stem cells and in glioblastoma, especially recurring glioblastoma. Phospholipase D1 elevation positively correlated with the level of CD44 and poor prognosis in glioblastoma patients. Temozolomide significantly upregulated the expression of phospholipase D1 in the low and moderate CD44 populations of glioblastoma stem cells, but not in the CD44High population in which phospholipase D1 is highly expressed. Phospholipase D1 conferred resistance to temozolomide in CD44High glioblastoma stem cells and increased their self-renewal capacity and maintenance. Phospholipase D1 expression significantly correlated with levels of temozolomide resistance factors, which were suppressed by microRNA-320a and -4496 induced by phospholipase D1 inhibition. Genetic and pharmacological targeting of phospholipase D1 attenuated glioblastoma stem cell-derived intracranial tumors of glioblastoma using the microRNAs, and improved survival. Treatment solely with temozolomide produced no benefits on the glioblastoma, whereas in combination, phospholipase D1 inhibition sensitized glioblastoma stem cells to temozolomide and reduced glioblastoma tumorigenesis. Together, these findings indicate that phospholipase D1 inhibition might overcome resistance to temozolomide and represents a potential treatment strategy for glioblastoma. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , MicroARNs/farmacología , Fosfolipasa D/antagonistas & inhibidores , Temozolomida/uso terapéutico , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Neoplasias Encefálicas/metabolismo , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo , Glioblastoma/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/uso terapéutico , Trasplante de Neoplasias , Regulación hacia Arriba
14.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074038

RESUMEN

Glioblastoma multiforme (GBM) has remained one of the most lethal and challenging cancers to treat. Previous studies have shown encouraging results when irinotecan was used in combination with temozolomide (TMZ) for treating GBM. However, irinotecan has a narrow therapeutic index: a slight dose increase in irinotecan can induce toxicities that outweigh its therapeutic benefits. SN-38 is the active metabolite of irinotecan that accounts for both its anti-tumor efficacy and toxicity. In our previous paper, we showed that SN-38 embedded into 50:50 biodegradable poly[(d,l)-lactide-co-glycolide] (PLGA) microparticles (SMPs) provides an efficient delivery and sustained release of SN-38 from SMPs in the brain tissues of rats. These properties of SMPs give them potential for therapeutic application due to their high efficacy and low toxicity. In this study, we tested the anti-tumor activity of SMP-based interstitial chemotherapy combined with TMZ using TMZ-resistant human glioblastoma cell line-derived xenograft models. Our data suggest that treatment in which SMPs are combined with TMZ reduces tumor growth and extends survival in mice bearing xenograft tumors derived from both TMZ-resistant and TMZ-sensitive human glioblastoma cell lines. Our findings demonstrate that combining SMPs with TMZ may have potential as a promising strategy for the treatment of GBM.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Irinotecán/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Temozolomida/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Irinotecán/efectos adversos , Ratones , Microplásticos/química , Microscopía Electrónica de Rastreo , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Imaging ; 18: 1536012119870899, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31478435

RESUMEN

Glioblastoma multiforme represents one of the deadliest brain tumor types, manifested by a high rate of recurrence and poor prognosis. The presence of glioma stem cells (GSCs) can repopulate the tumor posttreatment and resist therapeutics. A better understanding of GSC biology is essential for developing more effective interventions. We established a CD133 promoter-driven dual reporter, expressing green fluorescent protein (GFP) and firefly luciferase (CD133-LG), capable for in vitro and in vivo imaging of CD133+ GSCs. We first demonstrated the reporter enabled in vitro analyses of GSCs. DBTRG-05MG (Denver Brain Tumor Research Group 05) carrying CD133-LG (DBTRG-05MG-CD133-LG) system reported increased GFP/luciferase activities in neurospheres. Additionally, we identified and isolated CD133+/GFP+ cells with increased tumorigenic properties, stemness markers, Notch1, ß-catenin, and Bruton's tyrosine kinase (Btk). Furthermore, prolonged temozolomide (TMZ) treatment enriched GSCs (reflected by increased percentage of CD133+ cells). Subsequently, Btk inhibitor, ibrutinib, suppressed GSC generation and stemness markers. Finally, we demonstrated real-time evaluation of anti-GSC function of ibrutinib in vivo with TMZ-enriched GSCs. Tumorigenesis was noninvasively monitored by bioluminescence imaging and mice that received ibrutinib showed a significantly lower tumor burden, indicating ibrutinib as a potential GSC inhibitor. In conclusion, we established a dual optical imaging system which enables the identification of CD133+ GSCs and screening for anti-GSC drugs.


Asunto(s)
Glioma/diagnóstico por imagen , Células Madre Neoplásicas/citología , Imagen Óptica/métodos , Antígeno AC133/metabolismo , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Luciferasas de Luciérnaga , Ratones , Piperidinas , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Temozolomida/uso terapéutico
16.
Neuropathol Appl Neurobiol ; 45(5): 441-458, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30548945

RESUMEN

AIMS: Aberrant expression of microRNAs (miRNAs) is frequent in various cancers including gliomas. We aimed to characterize the role of miR-16-5p as a candidate tumour suppressor miRNA in gliomas. METHODS: Real-time PCR-based approaches were used for miRNA and mRNA expression profiling of glioma and non-neoplastic brain tissues as well as glioma cell lines. Protein levels were determined by Western blotting. In vitro analyses were performed following overexpression of miR-16-5p, trichostatin A (TSA) treatment, and siRNA-mediated knock-down of HDAC3 in glioma cells. Effects of miR-16-5p on glioma cell viability, apoptosis and response to irradiation and temozolomide (TMZ) were assessed. RESULTS: Expression of miR-16-5p was reduced relative to control brain tissue in isocitrate dehydrogenase (IDH)-mutant astrocytomas of World Health Organization (WHO) grades II, III and IV, and a subset of IDH-wildtype glioblastomas WHO grade IV. MiR-16-5p expression was lower in IDH-mutant than in IDH-wildtype gliomas, and down-regulated in IDH-wildtype glioma lines. MiR-16-5p overexpression reduced expression of important cell cycle and apoptosis regulators in glioma cells, including CDK6, CDC25A, CCND3, CCNE1, WEE1, CHEK1, BCL2 and MCL1. In line, CDK6, WEE1, CHEK1, BCL2 and MCL1 transcript levels were increased in WHO grade III or IV gliomas. TSA treatment and HDAC3 knockdown in glioma cells induced miR-16-5p up-regulation and reduced expression of its targets. Moreover, miR-16-5p overexpression inhibited proliferation and induced apoptosis in various glioma cell lines and increased sensitivity of A172 glioma cells to irradiation and TMZ. CONCLUSION: Reduced expression of miR-16-5p contributes to glioma cell proliferation, survival and resistance to cytotoxic therapy.


Asunto(s)
Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , MicroARNs/genética , Apoptosis/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Glioma/patología , Humanos
17.
Biochem Biophys Res Commun ; 495(2): 2010-2016, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29248726

RESUMEN

An authenticated U87MG clonal glioblastoma cell line was investigated to identify a sub-population of neurospheroidal (NSP) cells within the main epithelial population (U87MG). The NSP cells sorted using Fluorescence Assisted Cell Sorting (FACS) showed varied morphology, 30% lower growth rates, 40% higher IC50 values for temozolomide drug and could differentiate into the glial cell type (NDx). Metabolite profiling using HR-LCMS identified glucose, glutamine and serine in both populations and tryptophan only in U87MG as growth limiting substrates. Glycine, alanine, glutamate and proline were secreted by U87MG, however proline and glycine were re-utilized in NSP. Exo-metabolite profiling and phenotypic microarrays identified differential metabolism of primary carbon sources glucose and derived pyruvate for U87MG; glutamine and derived glutamate metabolism in NSP. Differential mRNA abundance of AKT1, PTEN, PIK3CA controlling metabolism, drug efflux, nutrient transport and epigenetic control MDM2 are potentially critical in shaping DNA methylation effects of temozolomide. Our study provides a new insight into the combined effect of these factors leading to temozolomide resistance in NSP.


Asunto(s)
Aminoácidos/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glucosa/metabolismo , Análisis de Flujos Metabólicos/métodos , Ácido Pirúvico/metabolismo , Antineoplásicos Alquilantes/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/administración & dosificación , Relación Dosis-Respuesta a Droga , Glioblastoma/patología , Humanos , Integración de Sistemas , Temozolomida
18.
Biochem Biophys Res Commun ; 496(4): 1040-1046, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29366782

RESUMEN

The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Adulto , Antineoplásicos Alquilantes/administración & dosificación , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Dacarbazina/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Temozolomida , Resultado del Tratamiento , Células Tumorales Cultivadas , Regulación hacia Arriba
19.
J Neurooncol ; 138(3): 499-508, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29876787

RESUMEN

INTRODUCTION: Temozolomide (TMZ) is the preferred chemotherapeutic drug approved for the Glioblastoma multiforme (GBM) treatment. However, resistance to TMZ is the most intractable challenge for treatment of GBM. Screening of miRNAs is becoming a novel strategy to reveal underlying mechanism of drug-resistance of human tumors. MATERIALS AND METHODS: We conducted RNA sequencing (RNA-seq) for GBM cells treated continuously with TMZ 1 or 2 week or not. Bioinformatic analysis was used to predict targets of these altered miRNAs. Subsequently, we studied the potential role of miR-1268a in TMZ-resistance of GBM cells. RESULTS: Expression levels of 55 miRNAs were identified altering both after 1 and 2 weeks TMZ treatment. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to illuminate the biological implication and related pathways of predicted target genes. We showed that miR-1268a was downregulated after TMZ treatment and targeted ABCC1/MRP1, a membrane transporter contributing to drug resistance, using dual-luciferase assay. Furthermore, we confirmed overexpression of miR-1268a inhibited protein translation of ABCC1 and restored upregulated expression of ABCC1 due to TMZ. Inversely, knockdown of miR-1268a increased ABCC1 at protein level and enhanced upregulation of ABCC1 with TMZ treatment. In addition, our data indicated that miR-1268a enhanced TMZ sensitivity in GBM cells. CONCLUSION: Through RNA-seq analysis, we discovered miR-1268a and elucidated its role in modulating TMZ-resistance of GBM cells by targeting ABCC1.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroARNs/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Temozolomida/efectos adversos , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , MicroARNs/genética , Análisis por Micromatrices , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Sincalida/metabolismo , Factores de Tiempo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Neurooncol ; 133(1): 59-68, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28425046

RESUMEN

Glioblastoma is one of the most frequent and aggressive brain tumors. Accumulating evidence indicates that microRNAs are involved in glioma proliferation, invasion and drug resistance. Previous studies showed that miR-198 is downregulated in glioblastoma. However, the function of miR-198 in glioblastoma is still unclear. In this study, we report that miR-198 levels were greatly downregulated in glioblastoma specimens and decreased expression of miR-198 was associated with poor prognosis in patients with glioblastoma. And overexpression of miR-198 increased chemosensitivity to temozolomide in vitro and in vivo. O6-methylguanine-DNA methyltransferase (MGMT) was identified as a direct target of miR-198, and miR-198 overexpression prevented the protein translation of MGMT. Furthermore, overexpression of MGMT restored miR-198-induced chemosensitivity to temozolomide. Moreover, the protein levels of MGMT were upregulated in clinical glioblastoma specimens and inversely correlated with miR-198 levels. In conclusion, our studies revealed that MiR-198 induces chemosensitivity in glioblastoma by targeting MGMT and that miR-198 may be used as a new diagnostic marker and therapeutic target for glioblastoma in the future.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , MicroARNs/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Animales , Antineoplásicos Alquilantes/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Resistencia a Antineoplásicos/fisiología , Femenino , Glioblastoma/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias , ARN Mensajero/metabolismo , Temozolomida , Proteínas Supresoras de Tumor/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda