Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Environ Manage ; 354: 120243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422571

RESUMEN

In the last two centuries, a high proportion of peatlands have been lost or severely degraded across the world. The value of peatlands is now well-recognised for biodiversity conservation, flood management, and carbon mitigation, with peatland restoration now central to many government policies for climate action. A challenge, however, is to determine 'natural' and 'disturbed' conditions of peatlands to establish realistic baselines for assessing degradation and setting restoration targets. This requires a tool or set of tools that can rapidly and reliably capture peatland condition across space and time. Our aim was to develop such a tool based on combined analysis of plant and testate amoebae; a group of shelled protists commonly used as indicators of ecological change in peatlands. The value of testate amoebae is well established in Northern Hemisphere Sphagnum-dominated peatlands; however, relatively little work has been undertaken for Southern Hemisphere peat forming systems. Here we provide the first assessment and comparison of the bioindicator value of testate amoebae and vascular plants in the context of Southern Hemisphere peatlands. Our results further demonstrate the unique ecohydrological dynamics at play in New Zealand peat forming systems that set them apart from Northern Hemisphere peatlands. Our results show that plant and testate amoeba communities provided valuable information on peatland condition at different scales, we found that testate amoebae tracked changes in the abiotic variables (depth to water table, pH, and conductivity) more closely than vascular plants. Our results further demonstrate that functional traits of testate amoebae showed promising relationships with disturbance. Amoeba test compression, aperture position and test size were linked to changes in hydrology driven by fluctuations in ground water tables; however, trait responses manifested differently in ombrotrophic and minerotrophic peatlands. Overall, testate amoebae provide a promising bioindicator for tracking degradation in New Zealand peatlands and a potential additional tool to assess peatland condition.


Asunto(s)
Amoeba , Biomarcadores Ambientales , Amoeba/fisiología , Humedales , Monitoreo Biológico , Nueva Zelanda , Biodiversidad , Suelo , Plantas , Ecosistema
2.
Ecol Appl ; 33(6): e2901, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37334723

RESUMEN

In fire-prone ecosystems, knowledge of vegetation-fire-climate relationships and the history of fire suppression and Indigenous cultural burning can inform discussions of how to use fire as a management tool, particularly as climate continues to change rapidly. On Wiisaakodewan-minis/Stockton Island in the Apostle Islands National Lakeshore of Wisconsin, USA, structural changes in a pine-dominated natural area containing a globally rare barrens community occurred after the cessation of cultural burning by the Indigenous Ojibwe people and the imposition of fire-suppression policies, leading to questions about the historical role of fire in this culturally and ecologically important area. To help understand better the ecological context needed to steward these pine forest and barrens communities, we developed palaeoecological records of vegetation, fire, and hydrological change using pollen, charcoal, and testate amoebae preserved in peat and sediment cores collected from bog and lagoon sediments within the pine-dominated landscape. Results indicated that fire has been an integral part of Stockton Island ecology for at least 6000 years. Logging in the early 1900s led to persistent changes in island vegetation, and post-logging fires of the 1920s and 1930s were anomalous in the context of the past millennium, likely reflecting more severe and/or extensive burning than in the past. Before that, the composition and structure of pine forest and barrens had changed little, perhaps due to regular low-severity surface fires, which may have occurred with a frequency consistent with Indigenous oral histories (~4-8 years). Higher severity fire episodes, indicated by large charcoal peaks above background levels in the records, occurred predominantly during droughts, suggesting that more frequent or more intense droughts in the future may increase fire frequency and severity. The persistence of pine forest and barrens vegetation through past periods of climatic change indicates considerable ecological resistance and resilience. Future persistence in the face of climate changes outside this historical range of variability may depend in part on returning fire to these systems.


Asunto(s)
Incendios , Pinus , Humanos , Ecosistema , Carbón Orgánico , Bosques , Wisconsin , Árboles
3.
Ecol Lett ; 25(1): 17-25, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34708510

RESUMEN

The salinisation of many coastal ecosystems is underway and is expected to continue into the future because of sea-level rise and storm intensification brought about by the changing climate. However, the response of soil microbes to increasing salinity conditions within coastal environments is poorly understood, despite their importance for nutrient cascading, carbon sequestration and wider ecosystem functioning. Here, we demonstrate deterioration in the productivity of a top-tier microbial group (testate amoebae) with increasing coastal salinity, which we show to be consistent across phylogenetic groups, salinity gradients, environment types and latitude. Our results show that microbial changes occur in the very early stages of marine inundation, presaging more radical changes in soil and ecosystem function and providing an early warning of coastal salinisation that could be used to improve coastal planning and adaptation.


Asunto(s)
Ecosistema , Salinidad , Secuestro de Carbono , Cambio Climático , Filogenia , Suelo , Humedales
4.
Glob Chang Biol ; 28(4): 1596-1617, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800308

RESUMEN

We test whether vegetation community composition from a 10-year climate manipulation experiment on a Welsh peat bog resembles vegetation communities during periods of climate change inferred from a peat core. Experimentally warmed and combined warmed and droughted treatments drove significant increases in ericaceous shrubs but Sphagnum was unaffected. Similarly, Calluna vulgaris seeds increase during inferred warmer periods in the palaeoecological record. Experimental short-term episodic drought (four 4-week drought treatments) did not affect vegetation. Plant community composition has undergone several abrupt changes throughout the past c. 1500 years, often in response to human disturbance. Only slight changes occurred during the Medieval Climate Anomaly (c. 950-1250 Common Era [CE]) in vegetation and hydrology, while abrupt changes occurred during the Little Ice Age (c. 1300-1850 CE) when water tables were highest, suggesting that these shifts were driven by changes in water table, modulated by climate. A period of water table drawdown c. 1800, synchronous with historical records of increased drainage, corresponds with the development of the present-day vegetation community. Modern analogues for fossil material, characterized by abundant Rhynchospora alba and Sphagnum pulchrum, are more common after this event. Vegetation changes due to climate inferred from the palaeo record differ from those observed in the experiments, possibly relating to differences in the importance of drivers of vegetation change over varying timescales. Whereas temperature is frequently identified as the dominant driver of plant community change in experiments, sustained changes in water table appear to be more important in the long-term record. We find evidence that recent climate change and other anthropogenic stressors (e.g. drainage, heavy metal and nitrogen pollution) may promote the development of novel plant communities without analogues in the fossil record. These communities may be poorer at sequestering carbon and may respond differently to future climate change.


Asunto(s)
Biodiversidad , Sphagnopsida , Cambio Climático , Humanos , Plantas , Suelo
5.
Microb Ecol ; 83(2): 459-469, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34052880

RESUMEN

Ancestral adaptations to tropical-like climates drive most multicellular biogeography and macroecology. Observational studies suggest that this niche conservatism could also be shaping unicellular biogeography and macroecology, although evidence is limited to Acidobacteria and testate amoebae. We tracked the phylogenetic signal of this niche conservatism in far related and functionally contrasted groups of common soil protists (Bacillariophyta, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida) along a humid but increasingly cold elevational gradient in Switzerland. Protist diversity decreased, and the size of the geographic ranges of taxa increased with elevation and associated decreasing temperature (climate), which is consistent with a macroecological pattern known as the Rapoport effect. Bacillariophyta exhibited phylogenetically overdispersed communities assembled by competitive exclusion of closely related taxa with shared (conserved) niches. By contrast, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida exhibited phylogenetically clustered communities assembled by habitat filtering, revealing the coexistence of closely related taxa with shared (conserved) adaptations to cope with the humid but temperate to cold climate of the study site. Phylobetadiversity revealed that soil protists exhibit a strong phylogenetic turnover among elevational sites, suggesting that most taxa have evolutionary constraints that prevent them from colonizing the colder and higher sites of the elevation gradient. Our results suggest that evolutionary constraints determine how soil protists colonize climates departing from warm and humid conditions. We posit that these evolutionary constraints are linked to an ancestral adaptation to tropical-like climates, which limits their survival in exceedingly cold sites. This niche conservatism possibly drives their biogeography and macroecology along latitudinal and altitudinal climatic gradients.


Asunto(s)
Cilióforos , Suelo , Biodiversidad , Cilióforos/genética , Ecosistema , Filogenia
6.
J Eukaryot Microbiol ; 68(2): e12835, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33222324

RESUMEN

The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.


Asunto(s)
Cercozoos , Rhizaria , Ursidae , Animales , Filogenia
7.
Microb Ecol ; 82(2): 459-469, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33442762

RESUMEN

The policy and practice of ecological restoration and conservation in China obtained some remarkable results. For example, Sphagnum moss growing on abandoned farmland, which was peatland before agricultural use, has rapidly expanded the wetland area in SW China. Microorganisms such as testate amoebae are sensitive to environmental change and thus have been widely used as ecological indicators in various habitats. We analyzed differently aged Sphagnum growing plots on a Sphagnum growing farmland and natural Sphagnum plots in SW China to examine how Sphagnum-dwelling testate amoeba communities and corresponding protozoic silicon (Si) pools respond to ecological restoration practice. We found that abundance, taxon richness, and diversity of testate amoebae were higher in Sphagnum growing farmland plots compared to natural Sphagnum plots. Protozoic Si pools showed an increase with Sphagnum growing time representing increased Si accumulation by idiosomic testate amoeba shells. However, protozoic Si pools were negatively correlated with taxon richness and diversity of testate amoebae. Our results showed that (i) natural Sphagnum plots were not characterized by the expected higher biodiversity of testate amoebae compared to Sphagnum growing plots and (ii) consequently protozoic Si pool quantity in natural Sphagnum plots was less driven by biodiversity of testate amoebae than expected. We concluded our results to underline the value of (i) environmental restoration policy in general and (ii) testate amoeba communities and corresponding protozoic Si pools for Si cycling in restoration areas of peatlands in particular. Based on our results, we recommend a sustainable cultivation of Sphagnum moss and an additional establishment of protected areas, where no Sphagnum harvesting occurs. These protected Sphagnum areas might represent hot spots of undisturbed testate amoeba communities and corresponding protozoic Si pools and thus of microbial Si cycling.


Asunto(s)
Amoeba , Sphagnopsida , Biodiversidad , Ecosistema
8.
J Eukaryot Microbiol ; 67(2): 245-251, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31808200

RESUMEN

Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. As attempts to establish a culture of Lecythium mutabilis repeatedly failed, it was not yet investigated by molecular means. We isolated single cells of L. mutabilis directly from their habitat and successfully sequenced the V4 region of their SSU rDNA. Phylogenetic analyses showed that L. mutabilis is not directly related to the genus Lecythium and instead branches within the Fiscullidae (Tectofilosida, Thecofilosea). Accordingly, we transfer the species L. mutabilis to a novel genus Omnivora gen. nov.


Asunto(s)
Cercozoos/clasificación , Cercozoos/citología , Cercozoos/genética , ADN Protozoario/análisis , ADN Ribosómico/análisis , Filogenia
9.
Microb Ecol ; 80(2): 309-321, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32157374

RESUMEN

Although the use of sub-fossil testate amoebae as a proxy for raised bog hydrology in Holocene paleoecological studies is well-established, some detailed aspects of species-environment relationships remain under-researched. One such issue is the effect of bog surface microtopography on the climatic sensitivity of testate amoeba communities. Although it has been suggested that some microforms-especially hummocks-may be less sensitive to climatic forcing than others, this has rarely been objectively tested. To investigate this, subfossil testate amoebae assemblages have been examined in a series of shallow cores collected along a hummock-lawn-hollow transect from a bog in central Ireland and the resulting reconstructed water table records, dated using 210Pb, have been compared with instrumental weather data. Testate amoebae communities in the hollow microform were found to be significantly less diverse than those in the hummock and lawn, and both the hummock and lawn showed statistically significant correlations with instrumental temperature and precipitation data. Therefore, whilst the suggestion that paleoecological investigations should target intermediate bog microforms remains sound, the notion that hummock-based testate amoebae hydrological data are climatically-insensitive is challenged.


Asunto(s)
Amebozoos/aislamiento & purificación , Arqueología/métodos , Clima , Ecología/métodos , Agua Subterránea/parasitología , Humedales , Amebozoos/clasificación , Cambio Climático , Irlanda
10.
J Eukaryot Microbiol ; 66(2): 232-243, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29945298

RESUMEN

A major drawback in testate amoeba research is a general lack of scientific studies combining molecular approaches and classical laboratory experiments. We isolated five yet uncultured testate amoebae of the genus Phryganella Penard, 1902 from three different rivers and one pond in Germany. Based on established cultures we show their morphology, which we studied by light and electron microscopy, and present their unique feeding mode on abundant and common pennate diatoms like Nitzschia spp. and Synedra spp., whose frustules are bent and frequently, but not always, broken during the feeding process. We further obtained the first SSU rDNA sequences of strains of the family Phryganellidae, all of which contain introns. We used the sequences to confirm the taxonomic placement of the Phryganellidae in the Arcellinida (Amoebozoa), branching as a sister group to the Cryptodifflugiidae.


Asunto(s)
Amebozoos/fisiología , Cadena Alimentaria , Amebozoos/genética , ADN Protozoario/análisis , ADN Ribosómico/análisis , Diatomeas , Conducta Alimentaria , Agua Dulce , Alemania , Rasgos de la Historia de Vida , Microscopía , Microscopía Electrónica de Rastreo
11.
Microb Ecol ; 78(2): 534-538, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30535652

RESUMEN

Unicellular free-living microbial eukaryotes of the order Arcellinida (Tubulinea; Amoebozoa) and Euglyphida (Cercozoa; SAR), commonly termed testate amoebae, colonise almost every freshwater ecosystem on Earth. Patterns in the distribution and productivity of these organisms are strongly linked to abiotic conditions-particularly moisture availability and temperature-however, the ecological impacts of changes in salinity remain poorly documented. Here, we examine how variable salt concentrations affect a natural community of Arcellinida and Euglyphida on a freshwater sub-Antarctic peatland. We principally report that deposition of wind-blown oceanic salt-spray aerosols onto the peatland surface corresponds to a strong reduction in biomass and to an alteration in the taxonomic composition of communities in favour of generalist taxa. Our results suggest novel applications of this response as a sensitive tool to monitor salinisation of coastal soils and to detect salinity changes within peatland palaeoclimate archives. Specifically, we suggest that these relationships could be used to reconstruct millennial scale variability in salt-spray deposition-a proxy for changes in wind-conditions-from sub-fossil communities of Arcellinida and Euglyphida preserved in exposed coastal peatlands.


Asunto(s)
Cercozoos/crecimiento & desarrollo , Lobosea/crecimiento & desarrollo , Regiones Antárticas , Biodiversidad , Cercozoos/metabolismo , Ecosistema , Lobosea/metabolismo , Salinidad , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo , Suelo/química , Suelo/parasitología
12.
Microb Ecol ; 77(4): 1014-1024, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30470844

RESUMEN

Studies on testate amoeba species distribution at small scales (i.e., single peatland sites) are rare and mostly focus on bogs or mineral-poor Sphagnum fens, leaving spatial patterns within mineral-rich fens completely unexplored. In this study, two mineral-rich fen sites of contrasting groundwater chemistry and moss layer composition were selected for the analysis of testate amoeba compositional variance within a single site. At each study site, samples from 20 randomly chosen moss-dominated plots were collected with several environmental variables being measured at each sampling spot. We also distinguished between empty shells and living individuals to evaluate the effect of empty shell inclusion on recorded species distribution. At the heterogeneous-rich Sphagnum-fen, a clear composition turnover in testate amoebae between Sphagnum-dominated and brown moss-dominated samples was closely related to water pH, temperature and redox potential. We also found notable species composition variance within the homogeneous calcareous fen, yet it was not as high as for the former site and the likely drivers of community assembly remained unidentified. The exclusion of empty shells provided more accurate data on species distribution as well as their relationship with some environmental variables, particularly moisture. Small-scale variability in species composition of communities seems to be a worthwhile aspect in testate amoeba research and should be considered in future sampling strategies along with a possible empty shell bias for more precise understanding of testate amoeba ecology and paleoecology.


Asunto(s)
Lobosea/fisiología , Microbiota , Suelo/química , Briófitas/crecimiento & desarrollo , República Checa , Lobosea/clasificación , Humedales
13.
Glob Chang Biol ; 24(9): 4131-4142, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29738631

RESUMEN

Peatlands represent globally significant soil carbon stores that have been accumulating for millennia under water-logged conditions. However, deepening water-table depths (WTD) from climate change or human-induced drainage could stimulate decomposition resulting in peatlands turning from carbon sinks to carbon sources. Contemporary WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peatlands using quantitative transfer function models. Here we present, for the first time, a study comparing TA-based WTD reconstructions to instrumentally monitored WTD and hydrological model predictions using the MILLENNIA peatland model to examine past peatland responses to climate change and land management. Although there was very good agreement between monitored and modeled WTD, TA-reconstructed water table was consistently deeper. Predictions from a larger European TA transfer function data set were wetter, but the overall directional fit to observed WTD was better for a TA transfer function based on data from northern England. We applied a regression-based offset correction to the reconstructed WTD for the validation period (1931-2010). We then predicted WTD using available climate records as MILLENNIA model input and compared the offset-corrected TA reconstruction to MILLENNIA WTD predictions over an extended period (1750-1931) with available climate reconstructions. Although the comparison revealed striking similarities in predicted overall WTD patterns, particularly for a recent drier period (1965-1995), there were clear periods when TA-based WTD predictions underestimated (i.e. drier during 1830-1930) and overestimated (i.e. wetter during 1760-1830) past WTD compared to MILLENNIA model predictions. Importantly, simulated grouse moor management scenarios may explain the drier TA WTD predictions, resulting in considerable model predicted carbon losses and reduced methane emissions, mainly due to drainage. This study demonstrates the value of a site-specific and combined data-model validation step toward using TA-derived moisture conditions to understand past climate-driven peatland development and carbon budgets alongside modeling likely management impacts.


Asunto(s)
Amébidos/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Humedales , Inglaterra , Modelos Teóricos
14.
Oecologia ; 187(1): 255-266, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29497833

RESUMEN

We investigated how the land-use change from rainforest into jungle rubber, intensive rubber and oil palm plantations affects decomposers and litter decomposition in Sumatra, Indonesia. Litterbags containing three litter types were placed into four land-use systems and harvested after 6 and 12 months. Litter mass loss and litter element concentrations were measured, and different microbial groups including bacteria, fungi and testate amoebae were studied. After 12 months 81, 65, 63 and 53% of litter exposed in rainforest, jungle rubber in oil palm and rubber plantations was decomposed. In addition to land use, litter decomposition varied strongly with litter type and short-term effects differed markedly from long-term effects. After 6 months, oil palm and rubber litter decomposed faster than rainforest litter, but after 12 months, decomposition of rainforest litter exceeded that of oil palm and rubber litter, reflecting adaptation of bacteria and fungi to decompose structural compounds in rainforest litter but not (or less) in rubber and oil palm litter. Bacterial and fungal community composition and testate amoeba species number and density varied strongly with litter type, but little with land use. However, community composition of testate amoebae was mainly affected by land use. Generally, changes in bacteria, fungi and testate amoebae were linked to changes in litter element concentrations, suggesting that element ratios of litter material as basal resource for the decomposer food web shape the structure of decomposer communities and decomposition processes via bottom-up forces. Overall, changing rainforest to monoculture plantations shifts the decomposer community structure and negatively affects litter decomposition.


Asunto(s)
Amoeba , Bosque Lluvioso , Hongos , Indonesia
15.
J Eukaryot Microbiol ; 64(6): 729-739, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28231613

RESUMEN

Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.


Asunto(s)
Variación Biológica Poblacional , Determinismo Genético , Lobosea/citología , Lobosea/genética , Clima , Exposición a Riesgos Ambientales , Microbiología Ambiental , Lobosea/clasificación
16.
Microb Ecol ; 74(3): 681-690, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28389728

RESUMEN

We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.s.l. Chemical elements and compounds of leaf litter were analyzed before exposure. At the end of exposure, microbial biomass and litter mass loss were measured, and living testate amoeba species number, density, biomass, and community composition were determined. In total, 125 testate amoeba species colonized the litter in litterbags. The results suggest that high litter nitrogen and low lignin concentrations are indicators of high litter quality for testate amoebae density and species richness. Their species number and density significantly declined in the order 1 > 4 > 2 leaf litter species and varied with leaf litter chemistry being at a maximum in high-quality single leaf litter species and low in low-quality leaf litter. Further, the addition of litter of high-quality to low-quality litter increased testate amoebae biomass and density; however, the values did not exceed the ones in single high-quality litter treatments. Moreover, the structure of testate amoeba communities varied with litter chemistry, with Fe, Na, lignin, and litter C-to-N ratio being of major importance, and indicating that litter chemistry reflects habitat quality for testate amoebae. Overall, the data show that leaf litter chemistry overrides leaf litter richness in structuring testate amoeba communities.


Asunto(s)
Amebozoos/fisiología , Biota , Hojas de la Planta/química , Bosque Lluvioso , Suelo/química , Ecuador , Árboles/química
17.
J Eukaryot Microbiol ; 63(5): 558-66, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27593700

RESUMEN

Hyalospheniids are among the most common and conspicuous testate amoebae in high-latitude peatlands and forest humus. These testate amoebae were widely studied as bioindicators and are increasingly used as models in microbial biogeography. However, data on their diversity and ecology are still very unevenly distributed geographically: notably, data are lacking for low-latitude peatlands. We describe here a new species, Nebela jiuhuensis, from peatlands near the Middle Yangtze River reach of south-central China with characteristic morphology. The test (shell) has hollow horn-like lateral extensions also found in N. saccifera, N. equicalceus (=N. hippocrepis), and N. ansata, three large species restricted mostly to Sphagnum peatlands of Eastern North America. Mitochondrial cytochrome oxidase (COI) data confirm that N. jiuhuensis is closely related to the morphologically very similar North American species N. saccifera and more distantly to N. ansata within the N. penardiana group. These species are all found in wet mosses growing in poor fens. Earlier reports of morphologically similar specimens found in South Korea peatlands suggest that N. jiuhuensis may be distributed in comparable peatlands in Eastern Asia (China and Korea). The discovery of such a conspicuous new species in Chinese peatlands suggests that many new testate amoebae species are yet to be discovered, including potential regional endemics. Furthermore, human activities (e.g., drainage, agriculture, and pollution) have reduced the known habitat of N. jiuhuensis, which can thus be considered as locally endangered. We, therefore, suggest that this very conspicuous micro-organism with a probably limited geographical distribution and specific habitat requirement should be considered as a flagship species for microbial biogeography as well as local environmental conservation and management.


Asunto(s)
Amebozoos/clasificación , Amebozoos/aislamiento & purificación , Lobosea/clasificación , Lobosea/aislamiento & purificación , Filogenia , Sphagnopsida/parasitología , Amoeba/clasificación , Amebozoos/citología , Amebozoos/genética , Animales , Biodiversidad , China , Clasificación , ADN Protozoario , Ecología , Ecosistema , Complejo IV de Transporte de Electrones/genética , Contaminación Ambiental , Lobosea/citología , Lobosea/genética , Microscopía Electrónica de Rastreo , Mitocondrias/enzimología , Filogeografía , Suelo/parasitología , Especificidad de la Especie
18.
Int J Legal Med ; 130(2): 551-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25874666

RESUMEN

Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro-environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.


Asunto(s)
Cercozoos/genética , Bosques , Cambios Post Mortem , Suelo/parasitología , Animales , Cercozoos/clasificación , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Animales , Filogenia , ARN Ribosómico , Porcinos
19.
J Fish Dis ; 39(5): 539-46, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25952929

RESUMEN

The case study targeted to determine the aetiology of nodular gill disease (NGD) of farmed rainbow trout. The methods included microscopical examination of gill material in fresh, culturing of isolated organisms, histology, transmission electron microscopy and molecular biology identification. The results revealed an intravital colonization of fish gills by the testate amoeba Rhogostoma minus Belar, 1921. Rhogostoma infection was found in all fish examined microscopically (15/15); in contrast, naked amoebae related to fully developed NGD lesions were found in minority of these fish (5/15). They belonged to four genera, Acanthamoeba, Vermamoeba, Naegleria and Vannella. Results presented in this study contribute to the mosaic of findings that contrary to amoebic gill disease of marine fish turn attention to the possibility of the heterogeneous, multi-amoeba-species and multifactorial aetiology of NGD.


Asunto(s)
Amebiasis/veterinaria , Cercozoos/fisiología , Enfermedades de los Peces/parasitología , Branquias/parasitología , Oncorhynchus mykiss/parasitología , Amebiasis/parasitología , Animales , Cercozoos/clasificación , Cercozoos/aislamiento & purificación , Coinfección
20.
Eur J Protistol ; 92: 126051, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194835

RESUMEN

The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism. Based on recent evidence, we propose that the shell of arcellinid testate amoebae is a crucial component facilitating the amoebae's attack of large prey. Accordingly, the shell is not purely protective, but must be considered also as a weapon. This change in perspective opens up numerous new avenues in protistology and will lead to a substantial change in ecological, palaeoecological, and evolutionary research.


Asunto(s)
Amoeba , Lobosea , Filogenia , Evolución Biológica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda