Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Arch Microbiol ; 206(7): 301, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874781

RESUMEN

Biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA) on indwelling medical devices complicates the treatment of infection. Tetrabromobisphenol A (TBBPA), a synthetic, lipophilic, halogenated aromatic compound widely used as an additive in plastics and electronic products, has raised environmental concerns due to its potential for bioaccumulation. This study investigated the impact of sub-inhibitory concentrations of TBBPA on MRSA biofilm formation. Crystal violet staining and confocal laser scanning microscopy analysis demonstrated that 1/8 MIC (0.5 µg/mL) of TBBPA significantly stimulated MRSA biofilm formation (P < 0.0001). MTT assays indicated that the metabolic activity within the biofilms increased by 15.60-40.85% compared to untreated controls. Dot blot immunoassay, autolysis assay, and extracellular DNA (eDNA) quantification further revealed TBBPA enhanced the production of polysaccharide intercellular adhesin (PIA) and eDNA, which are key biofilm components. Additionally, TBBPA was found to enhance the production of staphyloxanthin, facilitating MRSA survival under oxidative conditions and in human whole blood. RT-qPCR analysis showed that TBBPA significantly upregulated genes associated with biofilm formation (icaA, atlA, sarA), staphyloxanthin biosynthesis (crtM and sigB), and oxidative stress responses (sodA and katA). These findings suggest that TBBPA promotes MRSA biofilm development and enhances bacterial resistance to adverse conditions, thereby potentially exacerbating risks to human health.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Bifenilos Polibrominados , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Bifenilos Polibrominados/farmacología , Humanos , Xantófilas/metabolismo , Xantófilas/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
2.
Environ Sci Technol ; 58(2): 1299-1311, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38113523

RESUMEN

Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per µmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.


Asunto(s)
Sustancias Húmicas , Bifenilos Polibrominados , Anaerobiosis , ARN Ribosómico 16S/genética , Biodegradación Ambiental
3.
Anal Bioanal Chem ; 416(1): 141-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37934249

RESUMEN

In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.


Asunto(s)
Magnetosomas , Magnetosomas/metabolismo , Agua , Ensayo de Inmunoadsorción Enzimática , Proteínas Bacterianas/química
4.
Environ Res ; 247: 118113, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199473

RESUMEN

The challenge of meeting discharge standards for tetrabromobisphenol A (TBBPA) production wastewater, characterized by high concentrations of organic by-products, necessitates effective treatment methods. This study identifies 2,4-dibromophenol, 2,6-dibromophenol, 2,4,6-tribromophenol, chlorobenzene, and toluene as the primary organic by-product pollutants. A coagulation-centered three-step approach was established for TBBPA industrial wastewater treatment. The initial step involves acidification treatment to exploit the reduced solubility of 2,4-dibromophenol, 2,6-dibromophenol, and 2,4,6-tribromophenol under acidic conditions, with the optimal pH determined as 2.7-3.1. An acid-activated montmorillonite coagulant (AMC), prepared through roasting and high-pressure acid leaching, exhibits a distinctive "Core-shell" structure, contributing significantly to the combined coagulation and adsorption mechanism. The acid-soluble aluminum salts in AMC form positively charged flocs, electrostatically attracting negatively charged organic compounds in the wastewater. Simultaneously, the porous insoluble silicon framework displays strong adsorption capacity for pollutants. The removal efficiencies for toluene, chlorobenzene, 2,4-dibromophenol, 2,6-dibromophenol, and 2,4,6-tribromophenol reached 88.2%, 89.1%, 88.8%, 87.1%, and 89.4%, respectively. Elemental analysis reveals that the coloration of the wastewater stems from complexation reactions between phenolic compounds and Fe3+, originating from the corrosion of iron or steel reaction vessel. Post-treatment with cation exchange resin resulted in removal efficiencies of 5.2%, 59.1%, 80.2%, 77.9%, and 88.3% for the five substances, respectively. This study outlines a crucial pathway for the effective purification of TBBPA wastewater.


Asunto(s)
Contaminantes Ambientales , Fenoles , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Aguas Residuales , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/análisis , Clorobencenos/análisis , Tolueno/análisis , Adsorción
5.
Environ Res ; 252(Pt 4): 118915, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615792

RESUMEN

Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.


Asunto(s)
Residuos Electrónicos , Monitoreo del Ambiente , Bifenilos Polibrominados , Reciclaje , Bifenilos Polibrominados/análisis , China , Residuos Electrónicos/análisis , Material Particulado/análisis
6.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182911

RESUMEN

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Asunto(s)
Clorofenoles , Hígado , Microsomas Hepáticos , Bifenilos Polibrominados , Humanos , Animales , Ratas , Ratones , Perros , Porcinos , Porcinos Enanos/metabolismo , Microsomas Hepáticos/metabolismo , Hígado/metabolismo , Glucuronosiltransferasa/metabolismo , Animales de Laboratorio/metabolismo , Isoformas de Proteínas/metabolismo , Haplorrinos/metabolismo , Cinética , Glucurónidos/metabolismo , Uridina Difosfato/metabolismo
7.
Ecotoxicol Environ Saf ; 280: 116577, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870736

RESUMEN

Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.


Asunto(s)
Células 3T3-L1 , Adipogénesis , Retardadores de Llama , Metabolismo de los Lípidos , Bifenilos Polibrominados , Bifenilos Polibrominados/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Ratones , Adipogénesis/efectos de los fármacos , Humanos , Retardadores de Llama/toxicidad , Células Hep G2 , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo
8.
J Environ Manage ; 359: 121077, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718604

RESUMEN

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Asunto(s)
Microplásticos , Bifenilos Polibrominados , Aguas del Alcantarillado , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Microplásticos/toxicidad , Anaerobiosis , Especies Reactivas de Oxígeno/metabolismo
9.
J Environ Manage ; 354: 120302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401492

RESUMEN

Tetrabromobisphenol A (TBBPA) that widely exists in soil and poses a potential threat to ecological environment urgently needs economically efficient remediation techniques. This study utilized both homogeneous Fe2⁺ solution and heterogeneous iron-based nanomaterials (chemically synthesized nano zero-valence iron (nZVI) and green-synthesized iron nanoparticles (G-Fe NPs)) to activate persulfate (PS) and assess their efficacy in degrading TBBPA in soil. The results demonstrate the superior performance of heterogeneous catalytic systems (WG-Fe NPs/PS (82.07%) and WnZVI/PS (78.32%)) over homogeneous catalytic system (WFe2+/PS (71.69%)), In addition, G-Fe NPs and nZVI effectively controlled the slow release of Fe2+. The optimization analysis using response surface methodology (RSM) reveal the remarkable significance of the experimental model based on the box-behnken design. RSM show that G-Fe NPs/PS exhibited optimal process parameters and predicted the maximum soil TBBPA degradation efficiency reaching 98.77%. The results of density functional theory calculations suggest that C-Br are the primary targets for electrophilic substitution reactions. Based on the f0 value and △G, the degradation pathway of TBBPA is inferred to involve a sequential debromination process, followed by the cleavage of intermediate carbon-carbon bonds and subsequent oxidation reactions. Hence, G-Fe NPs/PS not only facilitate waste resource utilization but also hold significant application potential.


Asunto(s)
Hierro , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Hierro/química , Suelo , Oxidación-Reducción , Carbono , Contaminantes Químicos del Agua/química
10.
J Environ Sci (China) ; 142: 1-10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527875

RESUMEN

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Ratones , Animales , Masculino , Glándula Tiroides/patología , Bifenilos Polibrominados/toxicidad , Encéfalo , Retardadores de Llama/toxicidad , Mamíferos
11.
J Environ Sci (China) ; 145: 97-106, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844327

RESUMEN

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 µg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 µg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattern of HBCDs in the surface sediments from rivers were 41.73%-62.33%, 7.89%-25.54%, and 18.76%-40.65% for α-, ß-, and γ-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for α-, ß-, and γ-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control.


Asunto(s)
Caenorhabditis elegans , Monitoreo del Ambiente , Retardadores de Llama , Sedimentos Geológicos , Hidrocarburos Bromados , Contaminantes Químicos del Agua , Animales , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , China , Caenorhabditis elegans/efectos de los fármacos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Hidrocarburos Bromados/análisis , Hidrocarburos Bromados/toxicidad , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/análisis
12.
Artículo en Zh | MEDLINE | ID: mdl-38964913

RESUMEN

Brominated flame retardants (BFRs) are a kind of brominated compounds widely used in electronic and electrical appliances, textiles, construction materials and other industrial products to improve the flame retardant property. Because of its strong chemical stability, environmental persistence, long-distance transmission, biological accumulation, the exposure of humans and organisms in the ecosystem is increasing, and its potential biological effects are of great concern. Now BFRs can be detected in breast milk, serum, placenta and cord blood. Studies have shown that exposure to BFRs during pregnancy can lead to adverse birth outcomes such as low birth weight, malformation, gestational age changes and impairment of neurobehavioral development. This article summarizes the pollution and population exposure of three traditional BFRs, polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA), as well as the impact and mechanism of prenatal exposure on offspring birth outcomes and growth and development. It explores the harm of prenatal exposure to BFRs to offspring and proposes preventive measures for occupational populations for reference.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Hidrocarburos Bromados , Exposición Materna , Bifenilos Polibrominados , Efectos Tardíos de la Exposición Prenatal , Retardadores de Llama/toxicidad , Embarazo , Humanos , Femenino , Hidrocarburos Bromados/toxicidad , Éteres Difenilos Halogenados/toxicidad , Exposición Materna/efectos adversos , Bifenilos Polibrominados/toxicidad
13.
FASEB J ; 36(2): e22101, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032343

RESUMEN

Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3  µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.


Asunto(s)
Fibrosis/inducido químicamente , Fibrosis/metabolismo , Leiomioma/inducido químicamente , Bifenilos Polibrominados/administración & dosificación , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias Uterinas/inducido químicamente , Neoplasias Uterinas/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Proliferación Celular/efectos de los fármacos , Estrógenos/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Humanos , Leiomioma/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Fish Shellfish Immunol ; 132: 108501, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36566834

RESUMEN

Tetrabromobisphenol A (TBBPA) is one of the most common and persistent organic pollutants found in the environment. When TBBPA is ingested by organisms through various pathways and stored in the body, it shows obvious harmful effects. Selenium (Se) works as an antioxidant in the body, allowing it to withstand the poisonous effects of dangerous substances. The effects and mechanisms of Se and TBBPA on carp neutrophil immune function, apoptosis, and necroptosis, however, are unknown. As a result, we created TBBPA exposure and Se antagonism models using carp neutrophils as study objects, and we investigated the expression of genes implicated in extracellular traps (NETs), cytokines, apoptosis, and necroptosis. The findings demonstrated that extracellular traps neutrophils in the TBBPA group displayed the inhibition of NETs, apoptosis, and necrosis, as well as an increase in Reactive oxygen species (ROS) levels and activation of the MAPK pathway. The expression of genes related to the mitochondrial apoptosis pathway (Bax, Cyt-c, Bcl-2 and Caspase-3) and necroptosis pathway (MLKL, RIPK1, RIPK3, Caspase-8 and FADD) were activated. The expression of inflammatory factors IL-1 and TNF-α were increased, and the expression of IL-2 and IFN-γ were decreased. But an appropriate concentration of Se can mitigate the effects of TBBPA. Our results suggest that Se can mitigate the inhibitory effect of TBBPA on NETs release by regulating apoptosis and necroptosis of carp neutrophil via ROS/MAPK pathways. These results provide a basis information for exploring the toxicity of TBBPA, and enrich the anti-toxicity mechanism of trace element Se in the body.


Asunto(s)
Carpas , Trampas Extracelulares , Selenio , Animales , Neutrófilos , Selenio/farmacología , Selenio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carpas/metabolismo , Necroptosis , Apoptosis
15.
Environ Res ; 221: 114820, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400226

RESUMEN

The accumulation of tetrabromobisphenol A (TBBPA) in soil posed a serious threat to ecosystem and human health. Sodium alginate/sulfide coated iron nanoparticles (SA@S-Fe NPs) was synthesized by a two-step modification of Fe NPs prepared with tung tree leaves extracting solution, and utilized as a persulfate (PS) activator to degrade TBBPA in soil. Response surface methodology (RSM) optimization showed a theoretical maximum TBBPA degradation reaching 99.79% at the 34.28 °C, SA@S-Fe NPs and PS additions of 3.57 g kg-1 and 36.35 mM, respectively. The degradation mechanism of TBBPA suggested that the main reactive species produced in the SA@S-Fe NPs/PS system were •OH, SO4•-, and O2•-. Proposed mechanisms for the degradation of TBBPA in soil involved debromination, benzene rings split, hydroxylation, demethylation, and complete mineralization to CO2 and H2O. We also further studied the effect to soil physicochemical properties and morphology structure during TBBPA degradation in SA@S-Fe NPs/PS system, which showed that SOM, TN, C/N and TOC slightly reduced, the heavy metals Fe, Cu and Zn still existed in stable residue form, and the soil morphology showed a certain degree of aggregation. Therefore SA@S-Fe NPs/PS technology can effectively degrade soil TBBPA, maintain soil fertility, curb the migration of heavy metals, and environmental risks.


Asunto(s)
Metales Pesados , Nanopartículas , Bifenilos Polibrominados , Humanos , Hierro/química , Suelo/química , Alginatos , Ecosistema , Bifenilos Polibrominados/metabolismo , Sulfuros
16.
Arch Toxicol ; 97(11): 2983-2995, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606655

RESUMEN

Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a commonly used brominated flame retardant as a decabromodiphenyl ether substitute, has been detected in various environmental compartments, but its health hazards remain largely unknown. Our recent study showed that low-dose exposure of male mice to TBBPA-BDBPE from postnatal day (PND) 0 to 56 caused remarkable damage to the microtubule skeleton in Sertoli cells and the blood-testis barrier (BTB) but exerted little effect on conventional reproductive endpoints in adulthood. To investigate whether TBBPA-BDBPE may cause severe reproductive impairments at late reproductive age, here, we extended exposure of historically administrated male mice to 8-month age and allowed them to mate with non-treated females for the evaluation of fertility, followed by a general examination for the reproductive system. As expected, we found that 8-month exposure to 50 µg/kg/d as well as 1000 µg/kg/d TBBPA-BDBPE caused severe damage to the reproductive system, including reduced sperm counts, increased sperm abnormality, histological alterations of testes. Moreover, microtubule damage and BTB-related impairment were still observed following 8-month exposure. Noticeably, high-dose TBBPA-BDBPE-treated mice had fewer offspring with a female-biased sex ratio. All results show that long-term exposure to TBBPA-BDBPE caused severe reproductive impairment, including poor fertility at late reproductive age. It is therefore concluded that slight testicular injuries in early life can contribute to reproductive impairment at late reproductive age, highlighting that alterations in certain non-conventional endpoints should be noticed as well as conventional endpoints in future reproductive toxicity studies.


Asunto(s)
Éter , Infertilidad , Masculino , Femenino , Animales , Ratones , Semen , Éteres de Etila , Éteres
17.
Ecotoxicol Environ Saf ; 252: 114607, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738613

RESUMEN

Tetrabromobisphenol A (TBBPA), a non-degradable environmental pollutant, was discharge into the air during the manufacture, use and recycling of plastic products. Respiratory exposure is the main way to inhalation of TBBPA. However, the research on the damage of TBBPA to the respiratory system is still extremely few. The aim of this experiment was to explore the mechanism of TBBPA toxicity to the lungs. Forty C57BL/6 J mice randomly divided into 4 groups, and the experimental groups with TBBPA at 10 n M/kg, 20 n M/kg and 40 n M/kg for 14 consecutive days. Histopathological and ultrastructural analysis showed that the inflammatory cells infiltrated and tissue structure damaged in the lung of mice with exposing to TBBPA. The ROS and MDA levels increase and the T-AOC, GSH-Px, CAT, SOD activities inhibition was found in lung tissue with TBBPA exposure. The expression of autophagy-related factors Beclin-1, P62, LC3-II, ATG5, and ATG7 decreased. The activation of NF-κB/TNF-α pathway indicates the occurrence of inflammation. The expression of Bax, caspase3, caspase7, caspase 9 increase, the expression of Bcl-2 decreased, and the apoptosis pathway activated. The autophagy inducer rapamycin can reverse the adverse effects of inflammation and apoptosis. Taken together, TBBPA inhibits autophagy-induced pneumonia and apoptosis by overproduction ROS.


Asunto(s)
Autofagia , Inflamación , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Inflamación/metabolismo , Pulmón/metabolismo , Apoptosis , Estrés Oxidativo
18.
Ecotoxicol Environ Saf ; 262: 115320, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37531928

RESUMEN

Tetrabromobisphenol A (TBBPA) is a common brominated flame retardant that has a wide range of toxic effects on organisms. However, the mechanism of the toxic effects of TBBPA on the digestive system has rarely been studied. The purpose of this study was to investigate the mechanism of TBBPA toxicity on the gastric mucosa. In this study, TBBPA (mixed with corn oil) was administered by gavage at doses of 0 mg/kg (CG), 10 mg/kg and 20 mg/kg. The results showed that the levels of ROS, MDA and LPO were increased, and the activities of antioxidant enzymes were decreased. Large amounts of ROS activated the NF-κB pathway, leading to the development of an inflammatory response. The expression of BCL family and Caspase (Cas) family genes was increased, inducing apoptosis. The RIP3/MLKL pathway was activated, leading to cell necrosis. In summary, TBBPA can cause damage to the gastric mucosa through oxidative stress, leading to increased ROS activation of the NF-κB pathway. Treatment with the antioxidant NAC alleviated the damage to the gastric mucosa caused by TBBPA.

19.
Ecotoxicol Environ Saf ; 249: 114450, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321669

RESUMEN

Biochar-immobilized bacteria have been widely used to remove organic pollutants; however, the enhanced effect of biochar-immobilized bacteria on tetrabromobisphenol A (TBBPA) removal has not been fully investigated and the removal mechanism remains unclear. In this study, a bacterial strain with high TBBPA degradation ability, Burkholderia cepacian Y17, was isolated from an e-waste disassembly area, immobilized with biochar, and used for the removal of TBBPA. Comparisons were performed of the factors affecting the immobilization and TBBPA removal efficiency, including the biochar preparation temperature, immobilization temperature, and pH. The highest 7-day TBBPA removal efficiency by immobilized bacteria was observed with the most suitable biochar preparation temperature (BC500) and an immobilization pH and temperature of 7 and 35 °C, respectively. The TBBPA removal efficiency reached 59.37%, which was increased by 30.23% and 15.88% compared to that of free and inactivated immobilized Y17, respectively. The suitable biochar preparation temperature BC500, immobilization temperature of 35 °C, and neutral pH of 7 increased the bacterial population and extracellular polymer concentration, which facilitated bacterial immobilization on biochar and promoted TBBPA removal. In this case, the high immobilized bacteria concentration (4.62 × 108 cfu∙g-1) and protein and polysaccharide contents (28.43 and 16.16 mg·g-1) contributed to the removal of TBBPA by facilitating TBBPA degradation. The main TBBPA degradation processes by BC500-immobilized Y17 involved debromination, ß-scission, demethylation, O-methylation, hydroxylation, and hydroxyl oxidation. This study proposes a method for preparing immobilized bacteria for TBBPA removal and enriches the microbial degradation technology for TBBPA.


Asunto(s)
Bacterias , Carbón Orgánico , Bifenilos Polibrominados , Polisacáridos Bacterianos , Bacterias/metabolismo , Bifenilos Polibrominados/metabolismo
20.
Environ Toxicol ; 38(4): 820-832, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36629057

RESUMEN

Tetrabromobisphenol A (TBBPA) is a common environmental pollutant which has multi-organ toxicity to mammals. Eucalyptol (EUC) has super antioxidant biological activity. However, in this experimental study, we probed into the mechanism of toxic of TBBPA exposure on Grass carp hepatocytes (L8824 cells) and the antagonistic impact of EUC on TBBPA. We treated L8824 cells with 8 µg/ml TBBPA and/or 20 µM EUC for 24 h in this test research. The experiment results suggested that TBBPA exposure induced elevated levels of reactive oxygen species (ROS), led to oxidative stress, decreased SOD and CAT activities, decreased GSH and T-AOC contents, exacerbated MDA accumulation, activated ASK1/JNK signaling pathway, and further increased the contents of mitochondrial dependent apoptosis pathway related indicators (Cyt-C, Bax, Caspase 9, Caspase 3), while Bcl-2 expression decreased. In addition, TBBPA exposure induced increased expression of TNF-α, IL-6, IL-1ß, and decreased expression of IL-2, IFN-γ, Hepcidin, ß-defensin, LEAP2. The oxidative stress level, ASK1/JNK signal pathway expression level, apoptosis ratio and cellular immune function of cells exposed to EUC alone did not change significantly. Combined exposure of TBBPA and EUC significantly reduced the proportion of apoptosis and restored cellular immune function. Therefore, these results suggest that EUC can effectively antagonize TBBPA-induced apoptosis and immune dysfunction of L8824 cells by regulating ROS/ASK1/JNK signaling pathway.


Asunto(s)
Carpas , Sistema de Señalización de MAP Quinasas , Animales , Especies Reactivas de Oxígeno/metabolismo , Eucaliptol/farmacología , Carpas/metabolismo , Hepatocitos/metabolismo , Apoptosis , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda