RESUMEN
The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.
Asunto(s)
Microbioma Gastrointestinal , Locomoción , Conducta Social , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Trasplante de Microbiota Fecal , Heces/microbiología , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/microbiología , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/terapia , Análisis de Componente Principal , Agitación Psicomotora/patología , Transmisión SinápticaRESUMEN
Tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis in monoaminergic neurons, phenylalanine metabolism in hepatocytes, and nitric oxide synthesis in endothelial and immune cells. BH4 is consumed as a cofactor or is readily oxidized by autooxidation. Quinonoid dihydropteridine reductase (QDPR) is an enzyme that reduces quinonoid dihydrobiopterin (qBH2) back to BH4, and we have previously demonstrated the significance of QDPR in maintaining BH4 in vivo using Qdpr-KO mice. In addition to the levels of BH4 in the cells, the ratios of oxidized to reduced forms of BH4 are supposed to be important for regulating nitric oxide synthase (NOS) via the so-called uncoupling of NOS. However, previous studies were limited due to the absence of specific and high-affinity inhibitors against QDPR. Here, we performed a high-throughput screening for a QDPR inhibitor and identified Compound 9b with an IC50 of 0.72 µM. To understand the inhibition mechanism, we performed kinetic analyses and molecular dynamics simulations. Treatment with 9b combined with methotrexate (MTX), an inhibitor of another BH4-reducing enzyme, dihydrofolate reductase (DHFR), significantly oxidized intracellular redox states in HepG2, Jurkat, SH-SY5Y, and PC12D cells. Collectively, these findings suggest that 9b may enhance the anticancer and anti-autoimmune effects of MTX.
Asunto(s)
Biopterinas , Dihidropteridina Reductasa , Sinergismo Farmacológico , Metotrexato , Metotrexato/farmacología , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Humanos , Dihidropteridina Reductasa/metabolismo , Inhibidores Enzimáticos/farmacología , Oxidación-Reducción/efectos de los fármacos , Animales , Simulación de Dinámica MolecularRESUMEN
BACKGROUND AND AIMS: Biopterins, including tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), and biopterin (B), were crucial enzyme cofactors in vivo. Despite their recognized clinical significance, there remain notable research gaps and controversies surrounding experimental outcomes. This study aims to clarify the biopterins-related issues, including analytical art, physiological intervals, and pathophysiological implications. MATERIALS AND METHODS: A novel LC-MS/MS method was developed to comprehensively profile biopterins in plasma, utilizing chemical derivatization and cold-induced phase separation. Subsequently, apparently healthy individuals were enrolled to investigate the physiological ranges. And the relationships between biopterins and biochemical indicators were analyzed to explore the pathophysiological implications. RESULTS: The developed method was validated as reliable for detecting biopterins across the entire physiological range. Timely anti-oxidation was found to be essential for accurate assessment of biopterins. The observed overall mean ± SDs levels were 3.51 ± 0.94, 1.54 ± 0.48, 2.45 ± 0.84 and 5.05 ± 1.14 ng/mL for BH4, BH2, BH4/BH2 and total biopterins. The status of biopterins showed interesting correlations with age, gender, hyperuricemia and overweight. CONCLUSION: In conjunction with proper anti-oxidation, the newly developed method enables accurate determination of biopterins status in plasma. The observed physiological intervals and pathophysiological implications provide fundamental yet inspiring support for further clinical researches.
Asunto(s)
Biopterinas , Espectrometría de Masas en Tándem , Humanos , Biopterinas/análogos & derivados , Biopterinas/sangre , Biopterinas/metabolismo , Femenino , Masculino , Adulto , Espectrometría de Masas en Tándem/métodos , Persona de Mediana Edad , Cromatografía Liquida/métodos , Adulto Joven , Anciano , Biomarcadores/sangreRESUMEN
One of the most crucial enzymatic cofactors in the human body is tetrahydrobiopterin, which is acquired through biological synthesis and self-regeneration. During this regenerative process, it undergoes oxidation, deprotonation, further oxidation, and subsequent deprotonation, resulting in the formation of quinonoid-dihydrobiopterin, which then undergoes tautomerization to yield dihydrobiopterin. This study presents the thermodynamic and kinetic properties associated with each stage of the regeneration process using theoretical calculations. The redox potentials for oxidation steps and the pKa values for deprotonation steps are determined employing the Born-Haber cycle and the direct change of free energy in implicit solvent models. The redox metabolites are characterized and confirmed from their calculated absorption spectra using the time-dependent density functional theory method. For the tautomerization steps, an IRC calculation is executed, and rate constants are computed using Eyring's Transition State Theory (TST). The tunnelling probability of the H atom during the tautomerization process is incorporated using Wigner's tunnelling correction in the calculation of the rate constant. Notably, we identify the N3 atom as the most probable deprotonation site for H3B+ and predict its geometry based on our calculations. Furthermore, we elucidate the spectral properties of intermediates involved in the regeneration process, highlighting key electronic transitions responsible for their excitations. Our results indicate that each step of tautomerization occurs along vibrational bending modes. We have observed that these tautomerization processes have high activation energies by optimising transition states. Additionally, considering tunnelling correction can significantly affect the reaction rates associated with these processes. These results provide a comprehensive understanding of the thermodynamics and kinetics of the regeneration process of tetrahydrobiopterin, which will help in the modulation of its biological activity.
RESUMEN
Endothelial dysfunction, underlying the vascular complications of diabetes and other cardiovascular disorders, may result from uncoupling of endothelial nitric oxide synthase (eNOS) activity due to decreased levels of tetrahydrobiopterin (BH4), a critical co-factor for eNOS. Some clinical trials attempting to deliver exogenous BH4 as a potential therapeutic strategy in vascular disease states have failed due to oxidation of BH4 in the circulation. We sought to develop a means of protecting BH4 from oxidation while delivering it to dysfunctional endothelial cells. Polymeric and solid lipid nanoparticles (NPs) loaded with BH4 were delivered by injection or oral gavage, respectively, to streptozotocin-induced diabetic rats. BH4 was measured in coronary endothelial cells and endothelium-dependent vascular reactivity was assessed in vascular rings. Lymphatic uptake of orally delivered lipid NPs was verified by sampling mesenteric lymph. BH4-loaded polymeric NPs maintained nitric oxide production by cultured endothelial cells under conditions of oxidative stress. BH4-loaded NPs, delivered via injection or ingestion, increased coronary endothelial BH4 concentration and improved endothelium-dependent vasorelaxation in diabetic rats. Pharmacodynamics assessment indicated peak concentration of solid lipid NPs in the systemic bloodstream 6 hours after ingestion, with disappearance noted by 48 hours. These studies support the feasibility of utilizing NPs to deliver BH4 to dysfunctional endothelial cells to increase nitric oxide bioavailability. BH4-loaded NPs could provide an innovative tool to restore redox balance in blood vessels and modulate eNOS-mediated vascular function to reverse or retard vascular disease in diabetes.
Asunto(s)
Biopterinas , Diabetes Mellitus Experimental , Endotelio Vascular , Nanopartículas , Animales , Biopterinas/análogos & derivados , Biopterinas/farmacología , Biopterinas/administración & dosificación , Biopterinas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Nanopartículas/química , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismoRESUMEN
BACKGROUND: Disordered amino acid metabolism is observed in cerebral malaria (CM). This study sought to determine whether abnormal amino acid concentrations were associated with level of consciousness in children recovering from coma. Twenty-one amino acids and coma scores were quantified longitudinally and the data were analysed for associations. METHODS: In a prospective observational study, 42 children with CM were enrolled. Amino acid levels were measured at entry and at frequent intervals thereafter and consciousness was assessed by Blantyre Coma Scores (BCS). Thirty-six healthy children served as controls for in-country normal amino acid ranges. Logistic regression was employed using a generalized linear mixed-effects model to assess associations between out-of-range amino acid levels and BCS. RESULTS: At entry 16/21 amino acid levels were out-of-range. Longitudinal analysis revealed 10/21 out-of-range amino acids were significantly associated with BCS. Elevated phenylalanine levels showed the highest association with low BCS. This finding held when out-of-normal-range data were analysed at each sampling time. CONCLUSION: Longitudinal data is provided for associations between abnormal amino acid levels and recovery from CM. Of 10 amino acids significantly associated with BCS, elevated phenylalanine may be a surrogate for impaired clearance of ether lipid mediators of inflammation and may contribute to CM pathogenesis.
Asunto(s)
Aminoácidos , Coma , Malaria Cerebral , Humanos , Coma/sangre , Aminoácidos/sangre , Malaria Cerebral/sangre , Malaria Cerebral/complicaciones , Femenino , Masculino , Estudios Prospectivos , Preescolar , Estudios Longitudinales , Lactante , NiñoRESUMEN
Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.
Asunto(s)
Biopterinas , Modelos Animales de Enfermedad , Neuronas , Fenotipo , Tirosina 3-Monooxigenasa , Biopterinas/análogos & derivados , Animales , Humanos , Tirosina 3-Monooxigenasa/metabolismo , Ratones , Neuronas/metabolismo , Dopamina/metabolismo , Masculino , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Femenino , Técnicas de Sustitución del GenRESUMEN
Low plasma arginine bioavailability has been implicated in endothelial dysfunction and immune dysregulation. The role of arginine in COVID-19 is unknown, but could contribute to cellular damage if low. Our objective was to determine arginine bioavailability in adults and children with COVID-19 vs. healthy controls. We hypothesized that arginine bioavailability would be low in patients with COVID-19 and multisystem inflammatory syndrome in children (MIS-C). We conducted a prospective observational study of three patient cohorts; arginine bioavailability was determined in asymptomatic healthy controls, adults hospitalized with COVID-19, and hospitalized children/adolescents <21 y old with COVID-19, MIS-C, or asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection identified on admission screen. Mean patient plasma amino acids were compared to controls using the Student's t test. Arginine-to-ornithine ratio, a biomarker of arginase activity, and global arginine bioavailability ratio (GABR, arginine/[ornithine+citrulline]) were assessed in all three groups. A total of 80 patients were included (28 controls, 32 adults with COVID-19, and 20 pediatric patients with COVID-19/MIS-C). Mean plasma arginine and arginine bioavailability ratios were lower among adult and pediatric patients with COVID-19/MIS-C compared to controls. There was no difference between arginine bioavailability in children with COVID-19 vs. MIS-C. Adults and children with COVID-19 and MIS-C in our cohort had low arginine bioavailability compared to healthy adult controls. This may contribute to immune dysregulation and endothelial dysfunction in COVID-19. Low arginine-to-ornithine ratio in patients with COVID-19 or MIS-C suggests an elevation of arginase activity. Further study is merited to explore the role of arginine dysregulation in COVID-19.
Asunto(s)
Aminoácidos/sangre , COVID-19/sangre , Hospitalización , SARS-CoV-2/metabolismo , Adulto , COVID-19/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
Vascular aging is associated with the development of cardiovascular complications, in which endothelial cell senescence (ES) may play a critical role. Nitric oxide (NO) prevents human ES through inhibition of oxidative stress, and inflammatory signaling by mechanisms yet to be elucidated. Endothelial cells undergo an irreversible growth arrest and alter their functional state after a finite number of divisions, a phenomenon called replicative senescence. We assessed the contribution of NO during replicative senescence of human aortic (HAEC) and coronary (CAEC) endothelial cells, in which accumulation of the senescence marker SA-ß-Gal was quantified by ß-galactosidase staining on cultured cells. We found a negative correlation in passaged cell cultures from P0 to P12, between a reduction in NO production with increased ES and the formation of reactive oxygen (ROS) and nitrogen (ONOO-) species, indicative of oxidative and nitrosative stress. The effect of ES was evidenced by reduced expression of endothelial Nitric Oxide Synthase (eNOS), Interleukin Linked Kinase (ILK), and Heat shock protein 90 (Hsp90), alongside a significant increase in the BH2/BH4 ratio, inducing the uncoupling of eNOS, favoring the production of superoxide and peroxynitrite species, and fostering an inflammatory environment, as confirmed by the levels of Cyclophilin A (CypA) and its receptor Extracellular Matrix Metalloprotease Inducer (EMMPRIN). NO prevents ES by preventing the uncoupling of eNOS, in which oxidation of BH4, which plays a key role in eNOS producing NO, may play a critical role in launching the release of free radical species, triggering an aging-related inflammatory response.
Asunto(s)
Senescencia Celular , Células Endoteliales , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Estrés Oxidativo , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Aorta/metabolismo , Aorta/citologíaRESUMEN
The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.
Asunto(s)
Encéfalo/enzimología , GTP Ciclohidrolasa/deficiencia , Homeostasis/fisiología , Inmunidad Innata/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/inmunología , Neuronas Dopaminérgicas/enzimología , Neuronas Dopaminérgicas/inmunología , GTP Ciclohidrolasa/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Análisis de Secuencia de ARN/métodos , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/genética , Pez CebraRESUMEN
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangreRESUMEN
The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.
Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Células Endoteliales/metabolismo , Miocardio/metabolismo , Biopterinas/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Infarto del Miocardio/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Óxido Nítrico/metabolismoRESUMEN
BACKGROUND: Phenylalanine (Phe)-restricted diet is associated with lower quality of life for patients with phenylketonuria (PKU), and a concern for caregivers of recently-diagnosed infants. Sapropterin is an oral drug used as an alternative or adjunct to dietary treatment. We have observed that some of the young infants initially managed successfully with sapropterin monotherapy have required dietary treatment in long-term follow-up. We aimed to determine the baseline factors associated with future initiation of dietary treatment in these patients. METHODS: Data were obtained retrospectively from the medical records of 80 PKU patients started on sapropterin monotherapy before 3 months of age between 2011 and 2021. RESULTS: The patients were followed for a median of 3.9 years (Q1-Q3: 2.5-5.75 years). Sapropterin was tapered down and discontinued in 5 patients (6.3%) as their Phe levels remained below 360 µmol/L without treatment. Sapropterin monotherapy was sufficient in 62 patients (77.5%), while 13 (16.2%) required dietary treatment. Phe and tyrosine (Tyr) levels, and Phe:Tyr ratios differed significantly among the patients maintained on sapropterin monotherapy and those started on dietary treatment, but the Phe:Tyr ratio at diagnosis was the most important independent baseline variable (OR: 1.61, 95% CI: 1.15-2.27, p = 0.006), with Phe:Tyr ratio at diagnosis >5.25 associated with dietary treatment (sensitivity: 90.0%, specificity: 81.8%). Genotypic phenotype value (GPV), unavailable at baseline, was also associated with dietary treatment (median GPV 9.2 vs. 3.8, p = 0.006), but some genotypes were not specific to the final treatment modality. DISCUSSION: We propose that the Phe:Tyr ratio at diagnosis is an important indicator to predict dietary requirement in young infants initially managed with sapropterin monotherapy.
Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Lactante , Estudios Retrospectivos , Calidad de Vida , Fenilalanina , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/genética , Dieta , Biopterinas , Fenilalanina Hidroxilasa/genéticaRESUMEN
This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 µmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.
Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina/metabolismo , Fenilalanina/uso terapéutico , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina Hidroxilasa/uso terapéutico , Fenilcetonurias/genética , Fenilcetonurias/terapiaRESUMEN
BACKGROUND: Refractory depression is a devastating condition with significant morbidity, mortality, and societal cost. Approximately 15% of patients with major depressive disorder are refractory to currently available treatments. We hypothesized metabolic abnormalities contributing to treatment refractory depression are associated with distinct findings identifiable in the cerebrospinal fluid (CSF). Our hypothesis was confirmed by a previous small case-controlled study. Here we present a second, larger replication study. METHODS: We conducted a case-controlled, targeted, metabolomic evaluation of 141 adolescent and adult patients with well-characterized history of depression refractory to three maximum-dose, adequate-duration medication treatments, and 36 healthy controls. Plasma, urine, and CSF metabolic profiling were performed by coupled gas chromatography/mass spectrometry, and high-performance liquid chromatography, electrospray ionization, tandem mass spectrometry. RESULTS: Abnormalities were identified in 67 of 141 treatment refractory depression participants. The CSF abnormalities included: low cerebral folate (n = 20), low tetrahydrobiopterin intermediates (n = 11), and borderline low-tetrahydrobiopterin intermediates (n = 20). Serum abnormalities included abnormal acylcarnitine profile (n = 12) and abnormal serum amino acids (n = 20). Eighteen patients presented with two or more abnormal metabolic findings. Sixteen patients with cerebral folate deficiency and seven with low tetrahydrobiopterin intermediates in CSF showed improvement in depression symptom inventories after treatment with folinic acid and sapropterin, respectively. No healthy controls had a metabolite abnormality. CONCLUSIONS: Examination of metabolic disorders in treatment refractory depression identified an unexpectedly large proportion of patients with potentially treatable abnormalities. The etiology of these abnormalities and their potential roles in pathogenesis remain to be determined.
Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Adulto , Adolescente , Humanos , Ideación Suicida , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Metabolómica , Ácido FólicoRESUMEN
NEW FINDINGS: What is the central question of this study? What are the physiological roles of cardiomyocyte-derived tetrahydrobiopterin (BH4) in cardiac metabolism and stress response? What is the main finding and its importance? Cardiomyocyte BH4 has a physiological role in cardiac metabolism. There was a shift of substrate preference from fatty acid to glucose in hearts with targeted deletion of BH4 synthesis. The changes in fatty-acid metabolic profile were associated with a protective effect in response to ischaemia-reperfusion (IR) injury, and reduced infarct size. Manipulating fatty acid metabolism via BH4 availability could play a therapeutic role in limiting IR injury. ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) synthases in which its production of NO is crucial for cardiac function. However, non-canonical roles of BH4 have been discovered recently and the cell-specific role of cardiomyocyte BH4 in cardiac function and metabolism remains to be elucidated. Therefore, we developed a novel mouse model of cardiomyocyte BH4 deficiency, by cardiomyocyte-specific deletion of Gch1, which encodes guanosine triphosphate cyclohydrolase I, a required enzyme for de novo BH4 synthesis. Cardiomyocyte (cm)Gch1 mRNA expression and BH4 levels from cmGch1 KO mice were significantly reduced compared to Gch1flox/flox (WT) littermates. Transcriptomic analyses and protein assays revealed downregulation of genes involved in fatty acid oxidation in cmGch1 KO hearts compared with WT, accompanied by increased triacylglycerol concentration within the myocardium. Deletion of cardiomyocyte BH4 did not alter basal cardiac function. However, the recovery of left ventricle function was improved in cmGch1 KO hearts when subjected to ex vivo ischaemia-reperfusion (IR) injury, with reduced infarct size compared to WT hearts. Metabolomic analyses of cardiac tissue after IR revealed that long-chain fatty acids were increased in cmGch1 KO hearts compared to WT, whereas at 5 min reperfusion (post-35 min ischaemia) fatty acid metabolite levels were higher in WT compared to cmGch1 KO hearts. These results indicate a new role for BH4 in cardiomyocyte fatty acid metabolism, such that reduction of cardiomyocyte BH4 confers a protective effect in response to cardiac IR injury. Manipulating cardiac metabolism via BH4 could play a therapeutic role in limiting IR injury.
Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Óxido Nítrico Sintasa/metabolismo , Infarto/metabolismo , Ácidos Grasos/metabolismoRESUMEN
The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.
RESUMEN
Elevated serum prolactin concentrations occur in inherited disorders of biogenic amine metabolism because dopamine deficiency leads to insufficient inhibition of prolactin secretion. This work from the International Working Group on Neurotransmitter Related Disorders (iNTD) presents the results of the first standardized study on levodopa-refractory hyperprolactinemia (LRHP; >1000 mU/L) and pituitary magnetic resonance imaging (MRI) abnormalities in patients with inherited disorders of biogenic amine metabolism. Twenty-six individuals had LRHP or abnormal pituitary findings on MRI. Tetrahydrobiopterin deficiencies were the most common diagnoses (n = 22). The median age at diagnosis of LRHP was 16 years (range: 2.5-30, 1st-3rd quartiles: 12.25-17 years). Twelve individuals (nine females) had symptoms attributed to hyperprolactinemia: menstruation-related abnormalities (n = 7), pubertal delay or arrest (n = 5), galactorrhea (n = 3), and decreased sexual functions (n = 2). MRI of the pituitary gland was obtained in 21 individuals; six had heterogeneity/hyperplasia of the gland, five had adenoma, and 10 had normal findings. Eleven individuals were treated with the dopamine agonist cabergoline, ameliorating the hyperprolactinemia-related symptoms in all those assessed. Routine monitoring of these symptoms together with prolactin concentrations, especially after the first decade of life, should be taken into consideration during follow-up evaluations. The potential of slow-release levodopa formulations and low-dose dopamine agonists as part of first-line therapy in the prevention and treatment of hyperprolactinemia should be investigated further in animal studies and human trials. This work adds hyperprolactinemia-related findings to the current knowledge of the phenotypic spectrum of inherited disorders of biogenic amine metabolism.
RESUMEN
Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism, deficiency of which is associated with the most common metabolic phenotype of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). A bulk of PKU disease-associated missense mutations in the PAH gene have been studied, and the consequence of each PAH variant vary immensely. Prior research established that PKU-associated variants possess defects in protein folding with reduced cellular stability leading to rapid degradation. However, recent evidence revealed that PAH tetramers exist as a mixture of resting state and activated state whose transition depends upon the phenylalanine concentration and certain PAH variants that fail to modulate the structural equilibrium are associated with PKU disease. Collectively, these findings framed our understanding of the complex genotype-phenotype correlation in PKU. In the current study, we substantiate a link between PAH protein stability and its degradation by the ubiquitin-mediated proteasomal degradation system. Here, we provide an evidence that PAH protein undergoes ubiquitination and proteasomal degradation, which can be reversed by deubiquitinating enzymes (DUBs). We identified USP19 as a novel DUB that regulates PAH protein stability. We found that ectopic expression of USP19 increased PAH protein level, whereas depletion of USP19 promoted PAH protein degradation. Our study indicates that USP19 interacts with PAH and prevents polyubiquitination of PAH subsequently extending the half-life of PAH protein. Finally, the increase in the level of PAH protein by the deubiquitinating activity of USP19 resulted in enhanced metabolic function of PAH. In summary, our study identifies the role of USP19 in regulating PAH protein stability and promotes its metabolic activity. Graphical highlights 1. E3 ligase Cdh1 promotes PAH protein degradation leading to insufficient cellular amount of PAH causing PKU. 2. A balance between E3 ligase and DUB is important to regulate the proteostasis of PAH. 3. USP19 deubiquitinates and stabilizes PAH further protecting it from rapid degradation. 4. USP19 increases the enzymatic activity of PAH, thus maintaining normal Phe levels.
Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Ubiquitina-Proteína Ligasas/metabolismo , Estabilidad Proteica , Fenilalanina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismoRESUMEN
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.