Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Cell ; 184(7): 1775-1789.e19, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711260

RESUMEN

Regulatory T cells prevent the emergence of autoantibodies and excessive IgE, but the precise mechanisms are unclear. Here, we show that BCL6-expressing Tregs, known as follicular regulatory T (Tfr) cells, produce abundant neuritin protein that targets B cells. Mice lacking Tfr cells or neuritin in Foxp3-expressing cells accumulated early plasma cells in germinal centers (GCs) and developed autoantibodies against histones and tissue-specific self-antigens. Upon immunization, these mice also produced increased plasma IgE and IgG1. We show that neuritin is taken up by B cells, causes phosphorylation of numerous proteins, and dampens IgE class switching. Neuritin reduced differentiation of mouse and human GC B cells into plasma cells, downregulated BLIMP-1, and upregulated BCL6. Administration of neuritin to Tfr-deficient mice prevented the accumulation of early plasma cells in GCs. Production of neuritin by Tfr cells emerges as a central mechanism to suppress B cell-driven autoimmunity and IgE-mediated allergies.


Asunto(s)
Linfocitos B/inmunología , Proteínas del Tejido Nervioso/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/citología , Linfocitos B/metabolismo , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Ligadas a GPI/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Histonas/inmunología , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709923

RESUMEN

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Asunto(s)
Proteínas 14-3-3 , Dendritas , Cinesinas , Proteínas Serina-Treonina Quinasas , Receptores de Transferrina , Cinesinas/metabolismo , Cinesinas/genética , Proteínas 14-3-3/metabolismo , Dendritas/metabolismo , Fosforilación , Receptores de Transferrina/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Sitios de Unión , Microtúbulos/metabolismo , Ratas , Ratones , Unión Proteica
3.
Immunity ; 47(6): 1067-1082.e12, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29246441

RESUMEN

Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.


Asunto(s)
Colitis/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Represoras/inmunología , Serina-Treonina Quinasas TOR/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Diferenciación Celular , Colitis/genética , Colitis/patología , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/inmunología , Regulación de la Expresión Génica , Centro Germinal/inmunología , Centro Germinal/patología , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Fosfatidilinositol 3-Quinasas/genética , Cultivo Primario de Células , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Bazo/inmunología , Bazo/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Serina-Treonina Quinasas TOR/genética , Células Th17/inmunología , Células Th17/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
4.
Proc Natl Acad Sci U S A ; 120(4): e2217902120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669118

RESUMEN

Sex-biased humoral immune responses to COVID-19 patients have been observed, but the cellular basis for this is not understood. Using single-cell proteomics by mass cytometry, we find disrupted regulation of humoral immunity in COVID-19 patients, with a sex-biased loss of circulating follicular regulatory T cells (cTfr) at a significantly greater rate in male patients. In addition, a male sex-associated cellular network of T-peripheral helper, plasma blasts, proliferating and extrafollicular/atypical CD11c+ memory B cells was strongly positively correlated with neutralizing antibody concentrations and negatively correlated with cTfr frequency. These results suggest that sex-specific differences to the balance of cTfr and a network of extrafollicular antibody production-associated cell types may be a key factor in the altered humoral immune responses between male and female COVID-19 patients.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Femenino , Humanos , Masculino , COVID-19/metabolismo , Inmunidad Humoral , Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores , Linfocitos B
5.
Immunity ; 44(6): 1350-64, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27261277

RESUMEN

T follicular helper (Tfh) cells promote affinity maturation of B cells in germinal centers (GCs), whereas T follicular regulatory (Tfr) cells limit the GC reaction. Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels mediated by STIM and ORAI proteins is a fundamental signaling pathway in T lymphocytes. Conditional deletion of Stim1 and Stim2 genes in T cells abolished SOCE and strongly reduced antibody-mediated immune responses following viral infection caused by impaired differentiation and function of Tfh cells. Conversely, aging Stim1Stim2-deficient mice developed humoral autoimmunity with spontaneous autoantibody production due to abolished Tfr cell differentiation in the presence of residual Tfh cells. Mechanistically, SOCE controlled Tfr and Tfh cell differentiation through NFAT-mediated IRF4, BATF, and Bcl-6 transcription-factor expression. SOCE had a dual role in controlling the GC reaction by regulating both Tfh and Tfr cell differentiation, thus enabling protective B cell responses and preventing humoral autoimmunity.


Asunto(s)
Autoinmunidad , Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunidad Humoral , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Linfocitos T/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 2/genética
6.
J Cell Physiol ; 239(2): e31172, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214117

RESUMEN

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Animales , Humanos , Ratones , Pérdida de Hueso Alveolar/genética , Pérdida de Hueso Alveolar/metabolismo , Hierro , Osteoclastos , Periodontitis/genética , Periodontitis/metabolismo , Receptores de Transferrina/genética , Microtomografía por Rayos X , Ratones Endogámicos C57BL , Células Cultivadas
7.
Immunology ; 172(3): 408-419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501859

RESUMEN

Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.


Asunto(s)
Diferenciación Celular , Proteína 1 Inhibidora de la Diferenciación , Ratones Transgénicos , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Animales , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Regulación hacia Arriba , Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Activación de Linfocitos , Ratones Endogámicos C57BL , Inmunoglobulina G/inmunología
8.
Cancer Sci ; 115(7): 2220-2234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38623968

RESUMEN

Enhancing sensitivity to sorafenib can significantly extend the duration of resistance to it, offering substantial benefits for treating patients with hepatocellular carcinoma (HCC). However, the role of ferroptosis in influencing sorafenib sensitivity within HCC remains pivotal. The enhancer of zeste homolog 2 (EZH2) plays a significant role in promoting malignant progression in HCC, yet the relationship between ferroptosis, sorafenib sensitivity, and EZH2 is not entirely clear. Bioinformatic analysis indicates elevated EZH2 expression in HCC, predicting an unfavorable prognosis. Overexpressing EZH2 can drive HCC cell proliferation while simultaneously reducing ferroptosis. Further analysis reveals that EZH2 amplifies the modification of H3K27 me3, thereby influencing TFR2 expression. This results in decreased RNA polymerase II binding within the TFR2 promoter region, leading to reduced TFR2 expression. Knocking down EZH2 amplifies sorafenib sensitivity in HCC cells. In sorafenib-resistant HepG2(HepG2-SR) cells, the expression of EZH2 is increased. Moreover, combining tazemetostat-an EZH2 inhibitor-with sorafenib demonstrates significant synergistic ferroptosis-promoting effects in HepG2-SR cells. In conclusion, our study illustrates how EZH2 epigenetically regulates TFR2 expression through H3K27 me3, thereby suppressing ferroptosis. The combination of the tazemetostat with sorafenib exhibits superior synergistic effects in anticancer therapy and sensitizes the HepG2-SR cells to sorafenib, shedding new light on delaying and ameliorating sorafenib resistance.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Ferroptosis , Neoplasias Hepáticas , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Resistencia a Antineoplásicos/genética , Células Hep G2 , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales , Piridonas/farmacología , Piridonas/uso terapéutico , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Morfolinas/farmacología , Benzamidas , Compuestos de Bifenilo
9.
Eur J Immunol ; 53(8): e2350372, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160134

RESUMEN

Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Adulto , Humanos , Plasmodium vivax/fisiología , Antígeno CTLA-4 , Linfocitos T Colaboradores-Inductores , Linfocitos T CD4-Positivos
10.
J Virol ; 97(2): e0161222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779762

RESUMEN

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Asunto(s)
Virus de la Rabia , Rabia , Receptores de Transferrina , Internalización del Virus , Animales , Humanos , Ratones , Clatrina/metabolismo , Células HEK293 , Rabia/metabolismo , Virus de la Rabia/metabolismo , Receptores de Transferrina/metabolismo , Línea Celular , Endocitosis
11.
J Virol ; 97(2): e0161122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779763

RESUMEN

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Asunto(s)
COVID-19 , Virus de la Rabia , Receptores de Glutamato Metabotrópico , Receptores de Transferrina , SARS-CoV-2 , Internalización del Virus , Animales , Humanos , Ratones , Rabia/metabolismo , Virus de la Rabia/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Transferrina/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Exp Cell Res ; 424(1): 113474, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702193

RESUMEN

Glioma is a common type of brain tumor with high incidence and mortality rates. Iron plays an important role in various physiological and pathological processes. Iron entry into the cell is promoted by binding the transferrin receptor 2 (TFR2) to the iron-transferrin complex. This study was designed to assess the association between TFR2 and ferroptosis in glioma. Lipid peroxidation levels in glioma cells were assessed by determination of lipid reactive oxygen species (ROS), glutathione content, and mitochondrial membrane potential. The effect of TFR2 on TMZ sensitivity was examined by cell viability assays, flow cytometry, and colony formation assays. We found that Low TFR2 expression predicted a better prognosis for glioma patients. And overexpression of TFR2 promoted the production of reactive oxygen species and lipid peroxidation in glioma cells, thereby further promoting ferroptosis. This could be reversed by the ferroptosis inhibitors Fer-1 and DFO (both inhibitors of ferroptosis). Moreover, TFR2 potentiated the cytotoxic effect of TMZ (temozolomide) via activating ferroptosis. In conclusion, we found that TFR2 induced ferroptosis and enhanced TMZ sensitivity in gliomas. Our findings might provide a new treatment strategy for glioma patients and improve their prognosis.


Asunto(s)
Ferroptosis , Glioma , Humanos , Temozolomida/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Hierro/metabolismo , Receptores de Transferrina/genética
13.
Environ Toxicol ; 39(4): 2138-2149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38108610

RESUMEN

Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-ß (Aß1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aß (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aß1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.


Asunto(s)
Enfermedad de Alzheimer , Betaína , Ácidos Bóricos , Animales , Ratas , Betaína/farmacología , Sinaptosomas , 8-Hidroxi-2'-Desoxicoguanosina , Glutatión , ARN Mensajero
14.
J Arthroplasty ; 39(7): 1811-1819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38244641

RESUMEN

BACKGROUND: Patients presenting with periprosthetic osteolysis or fracture between ipsilateral hip and knee arthroplasties are challenging to treat successfully. Long-stem implants, osteopenic bones, and patient comorbidities all represent considerable surgical challenges. Poor results of fracture fixation in this group, coupled with the desire to retain well-performing implants and minimize soft-tissue trauma led to the developmentof the custom cement-over megaprostheses (CCOM). The aims of the study were to evaluate implant survivals, complications, and patient outcomes in those undergoing CCOM within our institution. METHODS: A retrospective analysis of patients undergoing CCOM between 2002 and 2022 was performed. We studied 34 cases, 33 patients, one patient underwent staged bilateral surgery with 26 women and 8 men. INDICATIONS: trauma (16), failure of implants /aseptic loosening (9), or joint pathology. The mean Charlson comorbidity index was 3.5 (range, 0 to 8). All patients were followed up (mean 75 months [range, 9 to 170]) at 6 weeks, 6 months, 1 year, and annually thereafter. The VAS, EuroQol-5D-3L and MSTS scores were collected at 1 year. RESULTS: Implant survival defined by the primary outcome (all-cause revision of the implant at any time point) at 12 months of 97% (32 of 33). In surviving patients, implant survival was 90% (18 of 20) and all 7 survived at 5 and 10 years, respectively. Implant survival including those in the primary outcome group and those free of infection at 12 months was 84.8% (28 of 33) and in surviving patients, implant survival was 70% (14 of 20) and 7 out of 7 at 5 and 10 years, respectively. CONCLUSIONS: The CCOM technique demonstrates good implant survivorships and satisfactory patient-reported outcomes in complex, often frail patients who have compromised bone stock. This series confirms the technique as an established alternative to total femoral replacement in these cases.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Cementos para Huesos , Medición de Resultados Informados por el Paciente , Diseño de Prótesis , Falla de Prótesis , Reoperación , Humanos , Masculino , Femenino , Estudios Retrospectivos , Anciano , Reoperación/estadística & datos numéricos , Persona de Mediana Edad , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/instrumentación , Artroplastia de Reemplazo de Cadera/instrumentación , Artroplastia de Reemplazo de Cadera/efectos adversos , Anciano de 80 o más Años , Prótesis de la Rodilla/efectos adversos , Prótesis de Cadera/efectos adversos , Adulto , Resultado del Tratamiento
15.
Popul Stud (Camb) ; : 1-15, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167038

RESUMEN

In this paper, we combine administrative data for Spain from 2010 to 2018 with meteorological data, to identify the effect of daily mean temperature on fertility. We demonstrate for Spain that hot days (≥25°C) decrease the total fertility rate nine months after exposure. Moreover, we do not observe any substantial heterogeneities in the effect of heat by mother's age, mother's educational attainment, sex of the newborn, climatic area, or air conditioning penetration. Our results suggest that climate change may be altering the seasonal distribution of births and affect fertility rates in a context with low fertility and rapid population ageing.

16.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125916

RESUMEN

Understanding the role of iron in ethanol-derived hepatic stress could help elucidate the efficacy of dietary or clinical interventions designed to minimize liver damage from chronic alcohol consumption. We hypothesized that normal levels of iron are involved in ethanol-derived liver damage and reduced dietary iron intake would lower the damage caused by ethanol. We used a pair-fed mouse model utilizing basal Lieber-DeCarli liquid diets for 22 weeks to test this hypothesis. In our mouse model, chronic ethanol exposure led to mild hepatic stress possibly characteristic of early-stage alcoholic liver disease, seen as increases in liver-to-body weight ratios. Dietary iron restriction caused a slight decrease in non-heme iron and ferritin (FeRL) expression while it increased transferrin receptor 1 (TfR1) expression without changing ferroportin 1 (FPN1) expression. It also elevated protein lysine acetylation to a more significant level than in ethanol-fed mice under normal dietary iron conditions. Interestingly, iron restriction led to an additional reduction in nicotinamide adenine dinucleotide (NAD+) and NADH levels. Consistent with this observation, the major mitochondrial NAD+-dependent deacetylase, NAD-dependent deacetylase sirtuin-3 (SIRT3), expression was significantly reduced causing increased protein lysine acetylation in ethanol-fed mice at normal and low-iron conditions. In addition, the detection of superoxide dismutase 1 and 2 levels (SOD1 and SOD2) and oxidative phosphorylation (OXPHOS) complex activities allowed us to evaluate the changes in antioxidant and energy metabolism regulated by ethanol consumption at normal and low-iron conditions. We observed that the ethanol-fed mice had mild liver damage associated with reduced energy and antioxidant metabolism. On the other hand, iron restriction may exacerbate certain activities of ethanol further, such as increased protein lysine acetylation and reduced antioxidant metabolism. This metabolic change may prove a barrier to the effectiveness of dietary reduction of iron intake as a preventative measure in chronic alcohol consumption.


Asunto(s)
Antioxidantes , Metabolismo Energético , Etanol , Animales , Ratones , Acetilación/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Antioxidantes/metabolismo , Masculino , Hierro/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa/metabolismo , Lisina/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptores de Transferrina/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , NAD/metabolismo , Ferritinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/etiología
17.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273582

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5ß1/αvß3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Diabetes Mellitus Tipo 2 , Chaperón BiP del Retículo Endoplásmico , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virología , COVID-19/complicaciones , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/virología , Internalización del Virus , Receptores Virales/metabolismo
18.
Immunol Rev ; 296(1): 104-119, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32564426

RESUMEN

Regulatory T cells (Tregs) expressing the transcription factor Foxp3 play a critical role in the control of immune homeostasis including the regulation of humoral immunity. Recently, it has become clear that a specialized subset of Tregs, T-follicular regulatory cells (Tfr), have a particular role in the control of T-follicular helper (Tfh) cell-driven germinal center (GC) responses. Following similar differentiation signals as received by Tfh, Tfr gain expression of characteristic chemokine receptors and transcription factors such as CXCR5 and BCL6 allowing them to travel to the B-cell follicle and deliver in situ suppression. It seems clear that Tfr are critical for the prevention of autoimmune antibody induction. However, their role in the control of foreign antigen-specific antibody responses appears more complex with various reports demonstrating either increased or decreased antigen-specific antibody responses following inhibition of Tfr function. Due to their recent discovery, our understanding of Tfr formation and function still has many gaps. In this review, we discuss our current knowledge of both Tregs and Tfr in the context of humoral immunity and how these cells might be manipulated in order to better control vaccine responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Antígenos/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Biomarcadores , Epítopos/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Inmunidad Humoral , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas/inmunología
19.
J Cell Physiol ; 238(7): 1465-1477, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37210730

RESUMEN

Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.


Asunto(s)
Intestinos , Linfocitos T Reguladores , Microambiente Tumoral , Centro Germinal , Intestinos/citología , Intestinos/inmunología , Linfocitos T Colaboradores-Inductores
20.
Immunology ; 168(4): 580-596, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36221236

RESUMEN

Hypoxia-induced pulmonary hypertension (HPH) is a progressive and lethal disease characterized by the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) and obstructive vascular remodelling. Previous research demonstrated that Breg cells were involved in the pathogenesis of pulmonary hypertension. This work aimed to evaluate the regulatory function of Breg cells in HPH. HPH mice model were established and induced by exposing to chronic hypoxia for 21 days. Mice with HPH were treated with anti-CD22 or adoptive transferred of Breg cells. The coculture systems of Breg cells with CD4+ T cells and Breg cells with PASMCs in vitro were constructed. Lung pathology was evaluated by HE staining and immunofluorescence staining. The frequencies of Breg cells, Tfh cells and Tfr cells were analysed by flow cytometry. Serum IL-21 and IL-10 levels were determined by ELISA. Protein levels of Blimp-1, Bcl-6 and CTLA-4 were determined by western blot and RT-PCR. Proliferation rate of PASMCs was measured by EdU. Compared to the control group, mean PAP, RV/(LV + S) ratio, WA% and WT% were significantly increased in the model group. Anti-CD22 exacerbated abnormal hemodynamics, pulmonary vascular remodelling and right ventricle hypertrophy in HPH, which ameliorated by adoptive transfer of Breg cells into HPH mice. The proportion of Breg cells on day 7 induced by chronic hypoxia was significantly higher than control group, which significantly decreased on day 14 and day 21. The percentage of Tfh cells was significantly increased, while percentage of Tfr cells was significantly decreased in HPH than those of control group. Anti-CD22 treatment increased the percentage of Tfh cells and decreased the percentage of Tfr cells in HPH mice. However, Breg cells restrained the Tfh cells differentiation and expanded Tfr cells differentiation in vivo and in vitro. Additionally, Breg cells inhibited the proliferation of PASMCs under hypoxic condition in vitro. Collectively, these findings suggested that Breg cells may be a new therapeutic target for modulating the Tfh/Tfr immune balance in HPH.


Asunto(s)
Linfocitos B Reguladores , Hipertensión Pulmonar , Ratas , Ratones , Animales , Hipertensión Pulmonar/etiología , Linfocitos B Reguladores/metabolismo , Ratas Sprague-Dawley , Células T Auxiliares Foliculares/metabolismo , Remodelación Vascular/fisiología , Pulmón/patología , Hipoxia/complicaciones , Hipoxia/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda