Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
J Comput Chem ; 45(13): 985-994, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38197269

RESUMEN

Thallium chemistry is experiencing unprecedented importance. Therefore, it is valuable to characterize some of the simplest thallium compounds. Stationary points along the singlet and triplet Tl 2 H 2 potential energy surface have been characterized. Stationary point geometries were optimized with the CCSD(T)/aug-cc-pwCVQZ-PP method. Harmonic vibrational frequencies were computed at the same level of theory while anharmonic vibrational frequencies were computed at the CCSD(T)/aug-cc-pwCVTZ-PP level of theory. Final energetics were obtained with the CCSDT(Q) method. Basis sets up to augmented quintuple-zeta cardinality (aug-cc-pwCV5Z-PP) were employed to obtain energetics in order to extrapolate to the complete basis set limits using the focal point approach. Zero-point vibrational energy corrections were appended to the extrapolated energies in order to determine relative energies at 0 K. It was found that the planar dibridged isomer lies lowest in energy while the linear structure lies highest in energy. The results were compared to other group 13 M 2 H 2 (M = B, Al, Ga, In, and Tl) theoretical studies and some interesting variations are found. With respect to experiment, incompatibilities exist.

2.
Chemistry ; 30(25): e202400390, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38381600

RESUMEN

Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.

3.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695484

RESUMEN

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Asunto(s)
Sedimentos Geológicos , Océanos y Mares , Agua de Mar , Talio , Agua de Mar/química , Sedimentos Geológicos/química , Actividades Humanas , Humanos , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Isótopos
4.
Environ Sci Technol ; 58(5): 2373-2383, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38271998

RESUMEN

Most nonoccupational human exposure to thallium (Tl) occurs via consumption of contaminated food crops. Brassica cultivars are common crops that can accumulate more than 500 µg Tl g-1. Knowledge of Tl uptake and translocation mechanisms in Brassica cultivars is fundamental to developing methods to inhibit Tl uptake or conversely for potential use in phytoremediation of polluted soils. Brassica cultivars (25 in total) were subjected to Tl dosing to screen for Tl accumulation. Seven high Tl-accumulating varieties were selected for follow-up Tl dosing experiments. The highest Tl accumulating Brassica cultivars were analyzed by synchrotron-based micro-X-ray fluorescence to investigate the Tl distribution and synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES) to unravel Tl chemical speciation. The cultivars exhibited different Tl tolerance and accumulation patterns with some reaching up to 8300 µg Tl g-1. The translocation factors for all the cultivars were >1 with Brassica oleracea var. acephala (kale) having the highest translocation factor of 167. In this cultivar, Tl is preferentially localized in the venules toward the apex and along the foliar margins and in minute hot spots in the leaf blade. This study revealed through scanning electron microscopy and X-ray fluorescence analysis that highly Tl-enriched crystals occur in the stoma openings of the leaves. The finding is further validated by XANES spectra that show that Tl(I) dominates in the aqueous as well as in the solid form. The high accumulation of Tl in these Brassica crops has important implications for food safety and results of this study help to understand the mechanisms of Tl uptake and translocation in these crops.


Asunto(s)
Brassica , Contaminantes del Suelo , Humanos , Brassica/química , Talio/análisis , Verduras , Rayos X , Fluorescencia , Biodegradación Ambiental , Productos Agrícolas
5.
Environ Res ; 241: 117577, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37923109

RESUMEN

The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.


Asunto(s)
Contaminantes del Suelo , Talio , Talio/análisis , Suelo , Sulfuros , Contaminantes del Suelo/análisis
6.
Environ Res ; 251(Pt 2): 118716, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490627

RESUMEN

The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (Ⅴ) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.


Asunto(s)
Mercurio , Minería , Talio , Mercurio/análisis , Mercurio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Metales Pesados/análisis , Microbiota/efectos de los fármacos , Residuos Industriales/análisis , Restauración y Remediación Ambiental/métodos , Microbiología del Suelo
7.
Arch Toxicol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361050

RESUMEN

Thallium (Tl) is one of the most toxic heavy metals, associated with accidental poisoning and homicide. It causes acute and chronic systemic diseases, including gastrointestinal and cardiovascular diseases and kidney failure. However, few studies have investigated the mechanism by which Tl induces acute kidney injury (AKI). This study investigated the toxic effects of Tl on the histology and function of rat kidneys using biochemical and histopathological assays after intraperitoneal thallium sulfate administration (30 mg/kg). Five days post-administration, rats exhibited severely compromised kidney function. Low-vacuum scanning electron microscopy revealed excessive calcium (Ca) deposition in the outer medulla of Tl-loaded rats, particularly in the medullary thick ascending limb (mTAL) of the loop of Henle. Tl accumulated in the mTAL, accompanied by mitochondrial dysfunction in this segment. Tl-loaded rats showed reduced expression of kidney transporters and channels responsible for Ca2+ reabsorption in the mTAL. Pre-administration of the Na-K-Cl cotransporter 2 (NKCC2) inhibitor furosemide alleviated Tl accumulation and mitochondrial abnormalities in the mTAL. These findings suggest that Tl nephrotoxicity is associated with preferential Tl reabsorption in the mTAL via NKCC2, leading to mTAL mitochondrial dysfunction and disrupted Ca2+ reabsorption, culminating in mTAL-predominant Ca crystal deposition and AKI. These findings on the mechanism of Tl nephrotoxicity may contribute to the development of novel therapeutic approaches to counter Tl poisoning. Moreover, the observation of characteristic Ca crystal deposition in the outer medulla provides new insights into diagnostic challenges in Tl intoxication.

8.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619592

RESUMEN

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Asunto(s)
Autofagia , Proliferación Celular , Supervivencia Celular , Estrés del Retículo Endoplásmico , Talio , Autofagia/efectos de los fármacos , Células PC12 , Animales , Ratas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Talio/toxicidad , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación , Microscopía Electrónica de Transmisión
9.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37563251

RESUMEN

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Asunto(s)
Cloruros , Simportadores de Cloruro de Sodio-Potasio , Humanos , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Cloruros/metabolismo , Microscopía por Crioelectrón , Miembro 3 de la Familia de Transportadores de Soluto 12 , Cationes/metabolismo
10.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599154

RESUMEN

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Asunto(s)
Arabidopsis , Estrés Oxidativo , Talio , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Talio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda