Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
1.
Cell ; 173(4): 879-893.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681456

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Estudios de Casos y Controles , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Exoma/genética , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Terapia Neoadyuvante , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de Supervivencia , Transcriptoma , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología
2.
Mol Cell ; 83(12): 1983-2002.e11, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295433

RESUMEN

The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Intrones/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN/genética , Empalmosomas/metabolismo , Transducción de Señal , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata Resistentes a la Castración/genética
3.
Genes Dev ; 35(19-20): 1325-1326, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599002

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Virtually all PDAC harbors an oncogenic mutation in the KRAS gene, making it the prime target for therapy. Most previous attempts to inhibit KRAS directly have been disappointing, but recent success in targeting some KRAS mutants presages a new era in PDAC therapy. Models of PDAC have predicted that identifying KRAS inhibitor resistance mechanisms will be critical. In this issue of Genes & Development, Hou and colleagues (pp. 1327-1332) identify one such mechanism in which the deubiquitinase USP21 up-regulates the nutrient-scavenging process of macropinocytosis, rescuing PDAC cells from Kras extinction.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitina Tiolesterasa/genética
4.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531315

RESUMEN

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina Tiolesterasa
5.
Mol Cell ; 77(3): 633-644.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31836388

RESUMEN

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Asunto(s)
Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Wnt-5a/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Melanoma/patología , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/fisiología
6.
Mol Cell ; 79(6): 1008-1023.e4, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32871104

RESUMEN

TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3ß and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3ß inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3ß signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.


Asunto(s)
Proteínas de Ciclo Celular/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Fusión Oncogénica/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Proteínas Tirosina Quinasas/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quimioterapia , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Mol Cell ; 75(4): 669-682.e5, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31302002

RESUMEN

Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.


Asunto(s)
Daño del ADN , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Quinasa I-kappa B/metabolismo , Irinotecán/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias , Neoplasias , Animales , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Células HCT116 , Humanos , Quinasa I-kappa B/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Telómero/genética , Telómero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Semin Cell Dev Biol ; 156: 1-10, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977107

RESUMEN

The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos/genética , Plasticidad de la Célula , Neoplasias/patología , Apoptosis , Muerte Celular
9.
J Cell Sci ; 137(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240344

RESUMEN

Anthracyclines, topoisomerase II enzyme poisons that cause DNA damage, are the mainstay of acute myeloid leukemia (AML) treatment. However, acquired resistance to anthracyclines leads to relapse, which currently lacks effective treatment and is the cause of poor survival in individuals with AML. Therefore, the identification of the mechanisms underlying anthracycline resistance remains an unmet clinical need. Here, using patient-derived primary cultures and clinically relevant cellular models that recapitulate acquired anthracycline resistance in AML, we have found that GCN5 (also known as KAT2A) mediates transcriptional upregulation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in AML relapse, independently of the DNA-damage response. We demonstrate that anthracyclines fail to induce DNA damage in resistant cells, owing to the loss of expression of their target enzyme, TOP2B; this was caused by DNA-PKcs directly binding to its promoter upstream region as a transcriptional repressor. Importantly, DNA-PKcs kinase activity inhibition re-sensitized AML relapse primary cultures and cells resistant to mitoxantrone, and abrogated their tumorigenic potential in a xenograft mouse model. Taken together, our findings identify a GCN5-DNA-PKcs-TOP2B transcriptional regulatory axis as the mechanism underlying anthracycline resistance, and demonstrate the therapeutic potential of DNA-PKcs inhibition to re-sensitize resistant AML relapse cells to anthracycline.


Asunto(s)
Proteína Quinasa Activada por ADN , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/uso terapéutico , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos , Recurrencia , ADN , Proteínas de Unión a Poli-ADP-Ribosa
10.
Immunity ; 47(4): 789-802.e9, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045907

RESUMEN

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Experimentales/terapia , Neutrófilos/inmunología , Proteínas Proto-Oncogénicas c-met/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Estimación de Kaplan-Meier , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
Mol Cell ; 72(2): 341-354.e6, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270106

RESUMEN

Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.


Asunto(s)
Empalme Alternativo/genética , Carcinogénesis/genética , Factores de Transcripción de Tipo Kruppel/genética , Oncogenes/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Animales , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética
12.
Genes Dev ; 32(17-18): 1105-1140, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30181359

RESUMEN

Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Animales , Resistencia a Antineoplásicos , Fusión Génica , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Pronóstico , Próstata/anatomía & histología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Microambiente Tumoral
13.
Cancer Metastasis Rev ; 43(1): 393-408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194153

RESUMEN

Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Plasticidad de la Célula , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Páncreas , Reprogramación Celular , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral
14.
Cancer Metastasis Rev ; 43(1): 409-421, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37950087

RESUMEN

MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.


Asunto(s)
Neoplasias , Factores de Transcripción , Animales , Humanos , Plasticidad de la Célula/genética , Pollos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Factores de Transcripción/genética
15.
Cancer Metastasis Rev ; 43(1): 261-292, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169011

RESUMEN

Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal , Adaptación Fisiológica , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
16.
EMBO Rep ; 24(10): e56279, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489735

RESUMEN

To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.


Asunto(s)
Arginina , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Arginina/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Apoptosis , Células Madre/metabolismo , Células Madre Neoplásicas/metabolismo
17.
J Pathol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072755

RESUMEN

In a recent issue of The Journal of Pathology, Chen and colleagues established novel patient-derived ex vivo models of NTRK fusion-positive soft tissue sarcoma to characterize resistance mechanisms against targeted therapy with tyrosine kinase inhibitors. Prolonged exposure to escalating concentrations of the tyrosine kinase inhibitor, entrectinib, ultimately led to the occurrence of resistant clones that harbored an inactivating mutation in the NF2 gene, not previously described in this context, accompanied by increased PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling. Finally, an inhibitor screen identified, among others, MEK and mTOR inhibitors as potential combination agents. © 2024 The Pathological Society of Great Britain and Ireland.

18.
Drug Resist Updat ; 76: 101114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924995

RESUMEN

Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.


Asunto(s)
Antineoplásicos , Plasticidad de la Célula , Resistencia a Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Neoplasias/genética , Microambiente Tumoral/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Epigénesis Genética
19.
Semin Cancer Biol ; 89: 76-91, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702449

RESUMEN

Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , Neoplasias de la Próstata/genética , Redes Reguladoras de Genes , Progresión de la Enfermedad
20.
Semin Cancer Biol ; 92: 130-138, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068553

RESUMEN

Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-ß (TGF-ß), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.


Asunto(s)
Células Endoteliales , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Células Endoteliales/metabolismo , Microambiente Tumoral/genética , Endotelio , Citocinas/metabolismo , Neovascularización Patológica/metabolismo , Transición Epitelial-Mesenquimal/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda