Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.777
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(19): e2221996120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37130151

RESUMEN

Fungi play essential roles in global health, ecology, and economy, but their thermal biology is relatively unexplored. Mushrooms, the fruiting body of mycelium, were previously noticed to be colder than surrounding air through evaporative cooling. Here, we confirm those observations using infrared thermography and report that this hypothermic state is also observed in mold and yeast colonies. The relatively colder temperature of yeasts and molds is also mediated via evaporative cooling and associated with the accumulation of condensed water droplets on plate lids above colonies. The colonies appear coldest at their center and the surrounding agar appears warmest near the colony edges. The analysis of cultivated Pleurotus ostreatus mushrooms revealed that the hypothermic feature of mushrooms can be observed throughout the whole fruiting process and at the level of mycelium. The mushroom's hymenium was coldest, and different areas of the mushroom appear to dissipate heat differently. We also constructed a mushroom-based air-cooling prototype system capable of passively reducing the temperature of a semiclosed compartment by approximately 10 °C in 25 min. These findings suggest that the fungal kingdom is characteristically cold. Since fungi make up approximately 2% of Earth's biomass, their evapotranspiration may contribute to cooler temperatures in local environments.


Asunto(s)
Agaricus , Pleurotus , Cuerpos Fructíferos de los Hongos
2.
J Exp Bot ; 75(10): 3125-3140, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38386894

RESUMEN

Effects of Venturia inaequalis on water relations of apple leaves were studied under controlled conditions without limitation of water supply to elucidate their impact on the non-haustorial biotrophy of this pathogen. Leaf water relations, namely leaf water content and transpiration, were spatially resolved by hyperspectral imaging and thermography; non-imaging techniques-gravimetry, a pressure chamber, and porometry-were used for calibration and validation. Reduced stomatal transpiration 3-4 d after inoculation coincided with a transient increase of water potential. Perforation of the plant cuticle by protruding conidiophores subsequently increased cuticular transpiration even before visible symptoms occurred. With sufficient water supply, cuticular transpiration remained at elevated levels for several weeks. Infections did not affect the leaf water content before scab lesions became visible. Only hyperspectral imaging was suitable to demonstrate that a decreased leaf water content was strictly limited to sites of emerging conidiophores and that cuticle porosity increased with sporulation. Microscopy confirmed marginal cuticle injury; although perforated, it tightly surrounded the base of conidiophores throughout sporulation and restricted water loss. The role of sustained redirection of water flow to the pathogen's hyphae in the subcuticular space above epidermal cells, to facilitate the acquisition and uptake of nutrients by V. inaequalis, is discussed.


Asunto(s)
Ascomicetos , Malus , Enfermedades de las Plantas , Hojas de la Planta , Agua , Malus/fisiología , Malus/microbiología , Hojas de la Planta/fisiología , Agua/metabolismo , Ascomicetos/fisiología , Transpiración de Plantas , Imágenes Hiperespectrales/métodos , Esporas Fúngicas/fisiología
3.
Diabetes Metab Res Rev ; 40(1): e3706, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37545385

RESUMEN

OBJECTIVE: To explore the difference in temperature recovery following cold stimulation between participants with and without diabetes mellitus (DM). MATERIALS AND METHODS: The participants without (control group; n = 25) and with (DM group; n = 26) DM were subjected to local cold stimulation (10º C for 90 s). The thermal images of their hands were continuously captured using a thermal camera within 7 min following cold stimulation, and the highest temperature of each fingertip was calculated. According to the temperature values at different timepoints, the temperature recovery curves were drawn, and the baseline temperature (T-base), initial temperature after cooling (T0), temperature decline amplitude (T-range), and area under the temperature recovery curve > T0 (S) were calculated. Finally, symmetry differences between the two groups were analysed. RESULTS: No statistical differences in the T-base, T0, and T-range were observed between the DM and control groups. After drawing the rewarming curve according to the temperature of the fingertips of the patients following cold stimulation, the S in the DM group was significantly lower than that in the control group (p < 0.05). Furthermore, the asymmetry of the base temperature of the hand was observed in the DM group. CONCLUSIONS: Following cold stimulation, the patients with DM exhibited a different rewarming pattern than those without DM. Thus, cold stimulation tests under infrared thermography may contribute to the early screening of diabetic peripheral neuropathy in future.


Asunto(s)
Diabetes Mellitus , Termografía , Humanos , Temperatura , Termografía/métodos , Frío , Recalentamiento , Temperatura Cutánea
4.
J Exp Biol ; 227(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206870

RESUMEN

We used thermal imagining and heat balance modelling to examine the thermal ecology of wild mammals, using the diurnal marsupial numbat (Myrmecobius fasciatus) as a model. Body surface temperature was measured using infra-red thermography at environmental wet and dry bulb temperatures of 11.7-29°C and 16.4-49.3°C, respectively; surface temperature varied for different body parts and with environmental temperature. Radiative and convective heat exchange varied markedly with environmental conditions and for various body surfaces reflecting their shapes, surface areas and projected areas. Both the anterior and posterior dorsolateral body areas functioned as thermal windows. Numbats in the shade had lower rates of solar radiative heat gain but non-solar avenues for radiative heat gain were substantial. Radiative gain was higher for black and lower for white stripes, but overall, the stripes had no thermal role. Total heat gain was generally positive (<4 to >20 W) and often greatly exceeded metabolic heat production (3-6 W). Our heat balance model indicates that high environmental heat loads limit foraging in open areas to as little as 10 min and that climate change may extend periods of inactivity, with implications for future conservation and management. We conclude that non-invasive thermal imaging is informative for modelling heat balance of free-living mammals.


Asunto(s)
Marsupiales , Animales , Marsupiales/metabolismo , Regulación de la Temperatura Corporal , Calor , Temperatura Corporal , Mamíferos
5.
World J Urol ; 42(1): 416, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014127

RESUMEN

PURPOSE: Protocol description for renal perfusion study using thermographic technology and description of the thermographic and clinical behavior of the transplanted kidneys before and after unclamping. METHODS: Infrared thermographic images of renal grafts are obtained before kidney reperfusion, 10 min after and just before closing the surgical wound. Thermographic data is evaluated together with the type of graft and donor, cold ischemia time, hypovascularized areas determined by the surgeon during surgical intervention, alterations in vascular flow in postoperative echo-Doppler, time at the beginning of graft function and serum creatinine monitoring during postoperative follow-up. RESULTS: 17 grafts were studied. The mean temperature of the grafts before reperfusion, 10 min after and at the end of the surgery were 18.7 °C (SD 6.27), 32.36 °C (SD1.47) and 32.07 °C (SD1.78) respectively. 4 grafts presented hypoperfused areas after reperfusion. These areas presented a lower temperature compared to the well perfused parenchyma surface using thermographic images. CONCLUSION: The study of the usefulness and applicability of thermography can allow the development of tools that provide additional objective information on organ perfusion in real time and non-invasive manner. Our protocol and initial results can contribute to provide new evidence. Further analyses should be developed to shed light on the role of this technology.


Asunto(s)
Trasplante de Riñón , Termografía , Termografía/métodos , Humanos , Masculino , Persona de Mediana Edad , Femenino , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Adulto , Rayos Infrarrojos , Protocolos Clínicos , Perfusión/métodos , Anciano , Isquemia Fría , Reperfusión/métodos
6.
J Med Primatol ; 53(3): e12711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38790083

RESUMEN

BACKGROUND: This study used infrared thermography (IRT) for mapping the facial and ocular temperatures of howler monkeys, to determine parameters for the diagnosis of febrile processes. There are no published IRT study in this species. METHODS: Were evaluated images of a group of monkeys kept under human care at Sorocaba Zoo (São Paulo, Brazil). The images were recorded during 1 year, in all seasons. Face and eye temperatures were evaluated. RESULTS: There are statistically significant differences in face and eye temperatures. Mean values and standard deviations for facial and ocular temperature were respectively: 33.0°C (2.1) and 36.5°C (1.9) in the summer; 31.5°C (4.5) and 35.3°C (3.6) in the autumn; 30.0°C (4.3) and 35.6°C (3.9) in the winter; 30.8°C (2.9) and 35.5°C (2.1) in the spring. CONCLUSIONS: The IRT was effective to establish a parameter for facial and ocular temperatures of black-and-gold howler monkeys kept under human care.


Asunto(s)
Alouatta , Temperatura Corporal , Ojo , Cara , Rayos Infrarrojos , Termografía , Animales , Termografía/veterinaria , Termografía/métodos , Alouatta/fisiología , Masculino , Estaciones del Año , Femenino , Fiebre/veterinaria , Fiebre/diagnóstico , Animales de Zoológico
7.
Int J Hyperthermia ; 41(1): 2366429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39004422

RESUMEN

Objective: This study is an open clinical trial. The aim of this study was to show the changes that occur in the viscoelastic properties of the plantar fascia (twenty healthy volunteers) measured by SEL and the changes in the plantar fascia temperature measured by thermography after the application of a 448 kHz capacitive resistive monopolar radiofrequency (CRMR) in active healthy subjects immediately after treatment and at the 1-week follow-up.Methods: Furthermore, to analyze if an intervention with 448 kHz CRMR in the plantar fascia of the dominant lower limb produces a thermal response in the plantar fascia of the non-dominant lower limb. The final objective was to analyze the level of association between the viscoelastic properties of the PF and the temperature before and after the intervention with 448 kHz CRMR.Results: Our results showed that a temperature change, which was measured by thermography, occurred in the plantar fascia after a single intervention (T0-T1) and at the 1-week follow up (T1-T2).Conclusion: However, no changes were found in the viscoelastic properties of the plantar fascia after the intervention or at the 1-week follow up. This is the first study to investigate changes in both plantar fascia viscoelastic properties and in plantar fascia temperature after a radiofrequency intervention.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fascia , Termografía , Humanos , Masculino , Termografía/métodos , Fascia/diagnóstico por imagen , Femenino , Adulto , Diagnóstico por Imagen de Elasticidad/métodos , Voluntarios Sanos , Adulto Joven , Persona de Mediana Edad
8.
Part Fibre Toxicol ; 21(1): 26, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778339

RESUMEN

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Asunto(s)
Material Particulado , Alveolos Pulmonares , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Células A549 , Material Particulado/toxicidad , Material Particulado/análisis , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Tamaño de la Partícula , Microscopía Electrónica de Transmisión , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
9.
BMC Med Imaging ; 24(1): 191, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080591

RESUMEN

Breast cancer is a prevalent disease and the second leading cause of death in women globally. Various imaging techniques, including mammography, ultrasonography, X-ray, and magnetic resonance, are employed for detection. Thermography shows significant promise for early breast disease detection, offering advantages such as being non-ionizing, non-invasive, cost-effective, and providing real-time results. Medical image segmentation is crucial in image analysis, and this study introduces a thermographic image segmentation algorithm using the improved Black Widow Optimization Algorithm (IBWOA). While the standard BWOA is effective for complex optimization problems, it has issues with stagnation and balancing exploration and exploitation. The proposed method enhances exploration with Levy flights and improves exploitation with quasi-opposition-based learning. Comparing IBWOA with other algorithms like Harris Hawks Optimization (HHO), Linear Success-History based Adaptive Differential Evolution (LSHADE), and the whale optimization algorithm (WOA), sine cosine algorithm (SCA), and black widow optimization (BWO) using otsu and Kapur's entropy method. Results show IBWOA delivers superior performance in both qualitative and quantitative analyses including visual inspection and metrics such as fitness value, threshold values, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and feature similarity index (FSIM). Experimental results demonstrate the outperformance of the proposed IBWOA, validating its effectiveness and superiority.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Termografía , Humanos , Termografía/métodos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Mama/diagnóstico por imagen
10.
J Reprod Dev ; 70(1): 49-54, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38008463

RESUMEN

Pre-ovulatory follicles are cooler than the neighboring reproductive organs in cows. Thus, measuring the temperature of reproductive organs could be a useful method for predicting estrus and ovulation in cows, and the establishment of a non-invasive technique is required. In this study, we used infrared thermography (IRT) to measure ocular surface temperature as a potential surrogate for reproductive organ temperature. Five Japanese Black cows with synchronized estrus were subjected to temperature measurements in five regions of the ocular surface, including the nasal conjunctiva, nasal limbus, center cornea, temporal limbus, and temporal conjunctiva, twice a day (0800 h and 1600 h) during the experimental period. The temperatures in the five regions significantly declined in cows from estrus to ovulation. To the best of our knowledge, this study is the first to use IRT to show a temperature decrease in the ocular surface along with estrus to ovulation in Japanese Black cows.


Asunto(s)
Ovulación , Termografía , Femenino , Bovinos , Animales , Temperatura , Termografía/veterinaria , Termografía/métodos , Temperatura Corporal , Estro , Sincronización del Estro
11.
Int J Biometeorol ; 68(6): 1109-1122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488867

RESUMEN

The increasing preference for indoor exercise spaces highlights the relationship between indoor thermal environments and physiological responses, particularly concerning thermal comfort during physical activity. Determining the metabolic heat production rate during exercise is essential for optimizing the thermal comfort, well-being, and performance of individuals engaged in physical activities. This value can be determined during the activity using several methods, including direct calorimetry measurement, indirect calorimetry that uses analysis of respiratory gases, or approximations using collected data such as speed, body mass, and heart rate. The study aimed to calculate the metabolic heat production rate by infrared thermal evaluation (ITE) based on the body's thermal balance approach and compare it with the values determined by indirect calorimetry (IC). Fourteen participants volunteered for the study, using a cycling ergometer in a controlled climatic chamber. After the familiarization sessions, maximal O2 intake levels (VO2max) were determined through maximal graded exercise tests. Subsequently, constant work rate exercise tests were performed at 60% of VO2max for 20 min. The metabolic heat production rates were calculated by IC and ITE for each athlete individually. Respiratory gases were used to determine IC, while body skin and core temperatures, along with physical environmental data, were applied to calculate ITE using the human body thermal balance approximation of ASHRAE. According to the results, heat storage rates were misleading among the body's heat transfer modes, particularly during the first 8 min of the exercise. ITE showed a moderate level of correlation with IC (r: 0.03-0.86) with a higher level of dispersion relative to the mean (CV%: 12-84%). Therefore, a new equation (ITEnew) for the heat storage rates was proposed using the experimental data from this study. The results showed that ITEnew provided more precise estimations for the entire exercise period (p > 0.05). Correlations between ITEnew and IC values were consistently strong throughout the exercise period (r: 0.62-0.85). It can be suggested that ITEnew values can predict IC during the constant work rate steady-state exercise.


Asunto(s)
Ejercicio Físico , Humanos , Masculino , Ejercicio Físico/fisiología , Adulto Joven , Adulto , Termogénesis , Atletas , Calorimetría Indirecta , Temperatura Corporal , Consumo de Oxígeno , Regulación de la Temperatura Corporal , Rayos Infrarrojos
12.
Int J Biometeorol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167210

RESUMEN

The objective of this work was to evaluate the effect of using naturally shaded pastures on scrotal thermoregulatory capacity, testicular echotexture, and sperm morphology of Nelore (Bos indicus) and Canchim (5/8 Bos taurus x 3/8 Bos indicus) bulls in a tropical climate region. Sixty-four adult Nelore and Canchim bulls were used, equally allocated in Full Sun (FS, n = 32) or Crop-Livestock-Forestry (CLF, n = 32) pasture systems. During five consecutive climate seasons, the bulls underwent monthly breeding soundness evaluations and the biometeorological variables in the systems were continuously monitored. Microclimate was significantly different between systems. CLF system had lower BGHI than FS throughout the experimental period. No triple interaction (Season x Breed x Treatment, P > 0.05) was observed for any of the variables. Animals in CLF showed lower body temperature in Summer (FS:39.41 ± 0.05 vs. CLF:39.30 ± 0.05 °C; P = 0.005) and in Autumn (FS:39.54 ± 0.05 vs. CLF:39.35 ± 0.05 °C; P = 0.005). Access to shading did not determine differences in the evolution of scrotal biometry, temperatures, and scrotal thermal gradients (P > 0.05). Regardless of breed, animals in CLF showed greater right testicular volume (FS:247.5 ± 5.7 vs. CLF:259.0 ± 5.7 cm³; P < 0.05), more suitable parenchyma echotexture, and fewer microlithiasis spots in the Spring and Summer. Testosterone concentration was higher in FS (FS:2.6 ± 0.2 vs. CLF:2.1 ± 0.2 ng/mL; P = 0.035). Canchim bulls presented higher total sperm defects during the Autumn and Winter (P = 0.010), but the total defects levels for Canchim and Nelore bulls were in normal range for adult bulls. Thus, the natural shade in CLF system was effective in improving the microclimate of pastures and minimizing adverse environmental effects on some reproductive features of interest in beef cattle.

13.
Lasers Med Sci ; 39(1): 41, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240851

RESUMEN

Far infrared (FIR) irradiation is commonly used as a convenient, non-contact, non-invasive treatment for diseases such as myocardial ischemia, diabetes, and chronic kidney disease. In this review, we focus on reviewing the potential therapeutic mechanisms of FIR and its cutting-edge applications in cancer detection. Firstly, we searched the relevant literature in the last decade for systematic screening and briefly summarized the biophysical properties of FIR. We then focused on the possible mechanisms of FIR in wound healing, cardiovascular diseases, and other chronic diseases. In addition, we review recent applications of FIR in cancer detection, where Fourier transform infrared spectroscopy and infrared thermography provide additional diagnostic methods for the medical diagnosis of cancer. Finally, we conclude and look into the future development of FIR for disease treatment and cancer detection. As a high-frequency non-ionizing wave, FIR has the advantages of safety, convenience, and low cost. We hope that this review can provide biological information reference and relevant data support for those who are interested in FIR and related high-frequency non-ionizing waves, to promote the further application of FIR in the biomedical field.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Neoplasias , Insuficiencia Renal Crónica , Humanos , Rayos Infrarrojos , Cicatrización de Heridas/efectos de la radiación , Neoplasias/diagnóstico , Neoplasias/terapia
14.
J Wound Care ; 33(Sup4a): cxviii-cxxix, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38588060

RESUMEN

OBJECTIVE: Accurate assessment of burn depth and burn wound healing potential is essential to determine early treatments. Infrared thermography (IRT) is a non-invasive and objective tool to do this. This systematic review evaluated the accuracy of IRT to determine burn wound healing potential. METHOD: This systematic review and meta-analysis used MEDLINE, EMBASE, CINAHL, PEDro, DiTA and CENTRAL databases. IRT data were extracted from primary studies and categorised into four cells (i.e., true positives, false positives, true negatives and false negatives). Subgroup analysis was performed according to methods used to capture thermal images. RESULTS: The search strategy identified 2727 publications; however, 15 articles were selected for review and 11 for meta-analysis. In our meta-analysis, the accuracy of IRT was 84.8% (63% sensitivity and 81.9% specificity). CONCLUSION: IRT is a moderately accurate tool to identify burn depth and healing potential. Thus, IRT should be used carefully for evaluating burn wounds.


Asunto(s)
Quemaduras , Termografía , Humanos , Termografía/métodos , Cicatrización de Heridas , Quemaduras/diagnóstico , Quemaduras/terapia , Acetofenonas
15.
Sensors (Basel) ; 24(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38733034

RESUMEN

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Asunto(s)
Ortesis del Pié , Temperatura , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Polivinilos/química , Polietileno/química , Polímeros/química , Ensayo de Materiales
16.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543986

RESUMEN

INTRODUCTION: The aim of this study was to observe the validity, diagnostic capacity, and reliability of the thermographic technique in the analysis of sensitive and motor sequelae in patients with chronic brain damage. METHOD: A longitudinal descriptive observational study was performed. Forty-five people with impairment in at least one anatomical region participated in and completed this study. All patients who had become infected by SARS-CoV-2 in the past year were excluded. Thermographic measurement was conducted, and the Modified Ashworth Scale and Pressure Pain Threshold was analyzed. RESULTS: A high correlation between two times of thermography data was observed. The Spearman correlations obtained between the Ashworth score on each leg and the temperature given by thermography were all significant. DISCUSSION AND CONCLUSIONS: Despite the above, the Spearman correlations obtained between the PPT in each leg and the temperature offered by thermography were not significant in any of the measurements. For this reason, thermography is a potential tool for the diagnosis and assessment of neuromuscular motor sequelae, but not for sensitive sequelae, after brain injury. Nevertheless, for the time being, no statistical relationship has been observed between the data reported by thermography and PPT; thus, future studies are needed to further investigate these results.


Asunto(s)
Lesiones Encefálicas , Termografía , Humanos , Termografía/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Lesiones Encefálicas/diagnóstico , Encéfalo
17.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38894360

RESUMEN

Maintaining high-quality welded connections is crucial in many industries. One of the challenges is assessing the mechanical properties of a joint during its production phase. Currently, in industrial practice, this occurs through NDT (non-destructive testing) conducted after the production process. This article proposes the use of a virtual sensor, which, based on temperature distributions observed on the joint surface during the welding process, allows for the determination of hardness distribution across the cross-section of a joint. Welding trials were conducted with temperature recording, hardness measurements were taken, and then, neural networks with different hyperparameters were tested and evaluated. As a basis for developing a virtual sensor, LSTM networks were utilized, which can be applied to time series prediction, as in the analyzed case of hardness value sequences across the cross-section of a welded joint. Through the analysis of the obtained results, it was determined that the developed virtual sensor can be applied to predict global temperature changes in the weld area, in terms of both its value and geometry changes, with the mean average error being less than 20 HV (mean for model ~35 HV). However, in its current form, predicting local hardness disturbances resulting from process instabilities and defects is not feasible.

18.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39204848

RESUMEN

Infrared thermography is considered a useful technique for diagnosing several skin pathologies but it has not been widely adopted mainly due to its high cost. Here, we investigate the feasibility of using low-cost infrared cameras with microbolometer technology for detecting skin cancer. For this purpose, we collected infrared data from volunteer subjects using a high-cost/high-quality infrared camera. We propose a degradation model to assess the use of lower-cost imagers in such a task. The degradation model was validated by mimicking video acquisition with the low-cost cameras, using data originally captured with a medium-cost camera. The outcome of the proposed model was then compared with the infrared video obtained with actual cameras, achieving an average Pearson correlation coefficient of more than 0.9271. Therefore, the model successfully transfers the behavior of cameras with poorer characteristics to videos acquired with higher-quality cameras. Using the proposed model, we simulated the acquisition of patient data with three different lower-cost cameras, namely, Xenics Gobi-640, Opgal Therm-App, and Seek Thermal CompactPRO. The degraded data were used to evaluate the performance of a skin cancer detection algorithm. The Xenics and Opgal cameras achieved accuracies of 84.33% and 84.20%, respectively, and sensitivities of 83.03% and 83.23%, respectively. These values closely matched those from the non-degraded data, indicating that employing these lower-cost cameras is appropriate for skin cancer detection. The Seek camera achieved an accuracy of 82.13% and a sensitivity of 79.77%. Based on these results, we conclude that this camera is appropriate for less critical applications.


Asunto(s)
Algoritmos , Estudios de Factibilidad , Rayos Infrarrojos , Neoplasias Cutáneas , Termografía , Humanos , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/diagnóstico por imagen , Termografía/métodos , Termografía/instrumentación
19.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205042

RESUMEN

Solar panels may suffer from faults, which could yield high temperature and significantly degrade their power generation. To detect faults of solar panels in large photovoltaic plants, drones with infrared cameras have been implemented. Drones may capture a huge number of infrared images. It is not realistic to manually analyze such a huge number of infrared images. To solve this problem, we develop a Deep Edge-Based Fault Detection (DEBFD) method, which applies convolutional neural networks (CNNs) for edge detection and object detection according to the captured infrared images. Particularly, a machine learning-based contour filter is designed to eliminate incorrect background contours. Then faults of solar panels are detected. Based on these fault detection results, solar panels can be classified into two classes, i.e., normal and faulty ones (i.e., macro ones). We collected 2060 images in multiple scenes and achieved a high macro F1 score. Our method achieved a frame rate of 28 fps over infrared images of solar panels on an NVIDIA GeForce RTX 2080 Ti GPU.

20.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38475006

RESUMEN

This paper presents a simple engineering method for evaluating the optical power emitted by light-emitting diodes (LEDs) using infrared thermography. The method is based on the simultaneous measurement of the electrical power and temperature of an LED and a heat source (resistor) that are enclosed in the same plastic packaging under the same cooling conditions. This ensures the calculation of the optical power emitted by the LED regardless of the value of the heat transfer coefficient. The obtained result was confirmed by comparing it with the standard direct measurement method using an integrated sphere. The values of the estimated optical power using the proposed method and the integrated sphere equipped with a spectrometer were consistent with each other. The tested LED exhibited a high optical energy efficiency, reaching approximately η ≈ 30%. In addition, an uncertainty analysis of the obtained results was performed. Compact modelling based on a thermal resistor network (Rth) and a 3D-FEM analysis were performed to confirm the experimental results.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda