RESUMEN
Interactions between cells are indispensable for signaling and creating structure. The ability to direct precise cell-cell interactions would be powerful for engineering tissues, understanding signaling pathways, and directing immune cell targeting. In humans, intercellular interactions are mediated by cell adhesion molecules (CAMs). However, endogenous CAMs are natively expressed by many cells and tend to have cross-reactivity, making them unsuitable for programming specific interactions. Here, we showcase "helixCAM," a platform for engineering synthetic CAMs by presenting coiled-coil peptides on the cell surface. helixCAMs were able to create specific cell-cell interactions and direct patterned aggregate formation in bacteria and human cells. Based on coiled-coil interaction principles, we built a set of rationally designed helixCAM libraries, which led to the discovery of additional high-performance helixCAM pairs. We applied this helixCAM toolkit for various multicellular engineering applications, such as spherical layering, adherent cell targeting, and surface patterning.
Asunto(s)
Bacterias , Péptidos , Humanos , Péptidos/químicaRESUMEN
Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.
Asunto(s)
Uniones Célula-Matriz/metabolismo , Morfogénesis , Animales , Membrana Basal/metabolismo , Adhesión Celular , División Celular , Movimiento Celular , Rastreo Celular , Embrión de Mamíferos/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Integrinas/metabolismo , Ratones , Modelos Biológicos , Glándulas Salivales/citología , Glándulas Salivales/embriología , Glándulas Salivales/metabolismo , Transcriptoma/genéticaRESUMEN
We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.
Asunto(s)
Linaje de la Célula , Modelos Biológicos , Teratoma/patología , Animales , Células HEK293 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Teratoma/genéticaRESUMEN
Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.
Asunto(s)
Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Potenciales de Acción , Diferenciación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Miocardio/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodosRESUMEN
Incomplete understanding of metastatic disease mechanisms continues to hinder effective treatment of cancer. Despite remarkable advancements toward the identification of druggable targets, treatment options for patients in remission following primary tumor resection remain limited. Bioengineered human tissue models of metastatic sites capable of recreating the physiologically relevant milieu of metastatic colonization may strengthen our grasp of cancer progression and contribute to the development of effective therapeutic strategies. We report the use of an engineered tissue model of human bone marrow (eBM) to identify microenvironmental cues regulating cancer cell proliferation and to investigate how triple-negative breast cancer (TNBC) cell lines influence hematopoiesis. Notably, individual stromal components of the bone marrow niche (osteoblasts, endothelial cells, and mesenchymal stem/stromal cells) were each critical for regulating tumor cell quiescence and proliferation in the three-dimensional eBM niche. We found that hematopoietic stem and progenitor cells (HSPCs) impacted TNBC cell growth and responded to cancer cell presence with a shift of HSPCs (CD34+CD38-) to downstream myeloid lineages (CD11b+CD14+). To account for tumor heterogeneity and show proof-of-concept ability for patient-specific studies, we demonstrate that patient-derived tumor organoids survive and proliferate in the eBM, resulting in distinct shifts in myelopoiesis that are similar to those observed for aggressively metastatic cell lines. We envision that this human tissue model will facilitate studies of niche-specific metastatic progression and individualized responses to treatment.
Asunto(s)
Células Madre Hematopoyéticas , Nicho de Células Madre , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Proliferación Celular , Médula Ósea/patología , Médula Ósea/metabolismo , Metástasis de la Neoplasia , Ingeniería de Tejidos/métodos , Neoplasias de la Mama/patología , HematopoyesisRESUMEN
Generating strong rapid adhesion between hydrogels has the potential to advance the capabilities of modern medicine and surgery. Current hydrogel adhesion technologies rely primarily on liquid-based diffusion mechanisms and the formation of covalent bonds, requiring prolonged time to generate adhesion. Here, we present a simple and versatile strategy using dry chitosan polymer films to generate instant adhesion between hydrogel-hydrogel and hydrogel-elastomer surfaces. Using this approach we can achieve extremely high adhesive energies (>3,000 J/m2), which are governed by pH change and non-covalent interactions including H-bonding, Van der Waals forces, and bridging polymer entanglement. Potential examples of biomedical applications are presented, including local tissue cooling, vascular sealing, prevention of surgical adhesions, and prevention of hydrogel dehydration. We expect these findings and the simplicity of this approach to have broad implications for adhesion strategies and hydrogel design.
Asunto(s)
Adhesivos , Polímeros , Humanos , Adherencias Tisulares/prevención & control , Adhesivos/química , Elastómeros , Hidrogeles/químicaRESUMEN
Extracellular matrix (ECM) viscoelasticity broadly regulates cell behavior. While hydrogels can approximate the viscoelasticity of native ECM, it remains challenging to recapitulate the rapid stress relaxation observed in many tissues without limiting the mechanical stability of the hydrogel. Here, we develop macroporous alginate hydrogels that have an order of magnitude increase in the rate of stress relaxation as compared to bulk hydrogels. The increased rate of stress relaxation occurs across a wide range of polymer molecular weights (MWs), which enables the use of high MW polymer for improved mechanical stability of the hydrogel. The rate of stress relaxation in macroporous hydrogels depends on the volume fraction of pores and the concentration of bovine serum albumin, which is added to the hydrogels to stabilize the macroporous structure during gelation. Relative to cell spheroids encapsulated in bulk hydrogels, spheroids in macroporous hydrogels have a significantly larger area and smaller circularity because of increased cell migration. A computational model provides a framework for the relationship between the macroporous architecture and morphogenesis of encapsulated spheroids that is consistent with experimental observations. Taken together, these findings elucidate the relationship between macroporous hydrogel architecture and stress relaxation and help to inform the design of macroporous hydrogels for materials-based cell therapies.
Asunto(s)
Alginatos , Movimiento Celular , Hidrogeles , Hidrogeles/química , Porosidad , Alginatos/química , Humanos , Matriz Extracelular/química , Animales , Esferoides Celulares/citología , Albúmina Sérica Bovina/química , Estrés Mecánico , Proliferación CelularRESUMEN
Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.
RESUMEN
The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.
Asunto(s)
Esquistosomiasis mansoni , Animales , Ratones , Esquistosomiasis mansoni/terapia , Citocinas/metabolismo , Schistosoma mansoni , Linfocitos T Colaboradores-Inductores , Antígenos Helmínticos , InmunoterapiaRESUMEN
Load-bearing soft tissues normally show J-shaped stress-strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young's modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m3), and high fatigue resistance (2,300 ± 500 J/m2). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.
Asunto(s)
Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Materiales Biocompatibles/química , Ingeniería de Tejidos , Agua/química , PolímerosRESUMEN
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Asunto(s)
Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Infarto del Miocardio/fisiopatología , Animales , Andamios del TejidoRESUMEN
The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.
Asunto(s)
Microfluídica/métodos , Modelos Biológicos , Corazón/crecimiento & desarrollo , Corazón/fisiología , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica/instrumentación , Poliésteres/química , Impresión Tridimensional , Ingeniería de TejidosRESUMEN
Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.
Asunto(s)
Cartílago Articular , Calidad de Vida , Humanos , Inmunoterapia , Inhibidores de la Angiogénesis , Calcificación FisiológicaRESUMEN
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Miocitos Cardíacos/fisiología , Miocardio , Diferenciación Celular/fisiología , Proliferación CelularRESUMEN
The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.
Asunto(s)
Nanofibras , Andamios del Tejido , Adhesión Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Silibina/farmacología , Andamios del Tejido/química , Nanofibras/química , Colágeno/farmacología , Colágeno/química , Ingeniería de Tejidos , Células Madre , Proliferación Celular , Células Cultivadas , Compuestos OrgánicosRESUMEN
Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.
Asunto(s)
Evaluación Preclínica de Medicamentos , Corazón , Ingeniería de Tejidos , Humanos , Animales , Evaluación Preclínica de Medicamentos/métodos , Ingeniería de Tejidos/métodos , Organoides/metabolismo , Organoides/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cardiopatías Congénitas/genética , Dispositivos Laboratorio en un ChipRESUMEN
The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.
Asunto(s)
Materiales Biomiméticos , Células , Microfluídica , RobóticaRESUMEN
Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9â 106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.
Asunto(s)
Células Artificiales , Factores de Crecimiento de Fibroblastos , Neovascularización Fisiológica , Animales , Células Artificiales/trasplante , Movimiento Celular , Proliferación Celular , Colágeno Tipo IV/metabolismo , Células Endoteliales/fisiología , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Biosíntesis de ProteínasRESUMEN
Autogenous bone grafts have long been considered the optimal choice for bone reconstruction due to their excellent biocompatibility and osteogenic properties. However, their limited availability and associated donor site morbidity have led to exploration of alternative bone substitutes. Cryogels, with their interconnected porosity, shape recovery, and enhanced mass transport capabilities, have emerged as a promising polymer-based solution. By incorporating bioactive glasses and nanofillers, cryogel composites offer bioactivity, cost-efficiency, and easy cell integration. This approach not only enhances bone regeneration but also underscores the broader role of nanotechnology in regenerative medicine. This mini-review discusses the advancement of organic-inorganic composites, focusing on biopolymeric cryogels and inorganic elements for reinforcement. We highlight how cryogels can be integrated into minimally invasive procedures, reducing patient distress and complications, and advanced 3D-printing techniques that enable further customization of these materials to mimic bone tissue architecture, offering potential for patient-specific treatments.
Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Criogeles , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Humanos , Criogeles/química , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/química , Sustitutos de Huesos/uso terapéutico , Huesos , Andamios del Tejido/química , Porosidad , Animales , Materiales Biocompatibles/química , Impresión Tridimensional , Polímeros/químicaRESUMEN
Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh). The newly discovered phage exhibits a bimodal length, comprising 950 nm and 240 nm, where the synergistic effect of these dual lengths promotes the formation of supramolecular fibrils with periodic banded structures. The assembled HAPh fibrils show the capability of HA mineralization and the directional growth of osteoblast cells. When applied to a dentin surface, it induces the regeneration of dentin-like tissue structures, showcasing its potential applications as a scaffold in tissue engineering. The integration of evolutionary screening and self-templating assembly holds promise for the future development of hierarchically organized tissue engineering materials.