Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Annu Rev Genet ; 54: 337-365, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886545

RESUMEN

The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes/genética , Animales , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutagénesis/genética , Mutación
2.
Mol Microbiol ; 120(2): 141-158, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278255

RESUMEN

Advances in sequencing technologies have enabled unprecedented insights into bacterial genome composition and dynamics. However, the disconnect between the rapid acquisition of genomic data and the (much slower) confirmation of inferred genetic function threatens to widen unless techniques for fast, high-throughput functional validation can be applied at scale. This applies equally to Mycobacterium tuberculosis, the leading infectious cause of death globally and a pathogen whose genome, despite being among the first to be sequenced two decades ago, still contains many genes of unknown function. Here, we summarize the evolution of bacterial high-throughput functional genomics, focusing primarily on transposon (Tn)-based mutagenesis and the construction of arrayed mutant libraries in diverse bacterial systems. We also consider the contributions of CRISPR interference as a transformative technique for probing bacterial gene function at scale. Throughout, we situate our analysis within the context of functional genomics of mycobacteria, focusing specifically on the potential to yield insights into M. tuberculosis pathogenicity and vulnerabilities for new drug and regimen development. Finally, we offer suggestions for future approaches that might be usefully applied in elucidating the complex cellular biology of this major human pathogen.


Asunto(s)
Elementos Transponibles de ADN , Mycobacterium tuberculosis , Humanos , Elementos Transponibles de ADN/genética , Genómica/métodos , Mutagénesis , Mycobacterium tuberculosis/genética , Fenotipo , Genoma Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Mol Syst Biol ; 19(6): e11398, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-36970845

RESUMEN

In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self-propagating transposon platform for continuous genome-wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Mutagénesis Insercional/genética , Elementos Transponibles de ADN/genética , Fenotipo , Redes Reguladoras de Genes
4.
Microbiol Immunol ; 68(2): 36-46, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105571

RESUMEN

The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Bordetella , Animales , Humanos , Bordetella bronchiseptica/genética , ARN Polimerasa Sigma 54 , Bordetella pertussis/genética , Factores de Virulencia de Bordetella/genética , Factores de Virulencia/genética , Mamíferos
5.
J Bacteriol ; 205(10): e0020823, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37791755

RESUMEN

Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.


Asunto(s)
Antiinfecciosos , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Antioxidantes/metabolismo , Glutatión Reductasa/metabolismo , Oxidantes/metabolismo , Antiinfecciosos/metabolismo
6.
Infect Immun ; 91(10): e0022823, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37676013

RESUMEN

Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Infecciones Estafilocócicas/metabolismo , Sistema Respiratorio , Fibrosis Quística/complicaciones , Virulencia/genética
7.
Antimicrob Agents Chemother ; 67(12): e0110223, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37966228

RESUMEN

We describe a genome-scale approach to identify the essential biological process targeted by a new antibiotic. The procedure is based on the identification of essential genes whose inactivation sensitizes a Gram-negative bacterium (Acinetobacter baylyi) to a drug and employs recently developed transposon mutant screening and single-mutant validation procedures. The approach, based on measuring the rates of loss of newly generated knockout mutants in the presence of antibiotic, provides an alternative to traditional procedures for studying essential functions using conditional expression or activity alleles. As a proof of principle study, we evaluated whether mutations enhancing sensitivity to the ß-lactam antibiotic meropenem corresponded to the known essential target process of the antibiotic (septal peptidoglycan synthesis). We found that indeed mutations inactivating most genes needed for peptidoglycan synthesis and cell division strongly sensitized cells to meropenem. Additional classes of sensitizing mutations in essential genes were also identified, including those that inactivated capsule synthesis, DNA replication, or envelope stress response regulation. The essential capsule synthesis mutants appeared to enhance meropenem sensitivity by depleting a precursor needed for both capsule and peptidoglycan synthesis. The replication mutants may sensitize cells by impairing division. Nonessential gene mutations sensitizing cells to meropenem were also identified in the screen and largely corresponded to functions subordinately associated with the essential target process, such as in peptidoglycan recycling. Overall, these results help validate a new approach to identify the essential process targeted by an antibiotic and define the larger functional network determining sensitivity to it.


Asunto(s)
Antibacterianos , Genes Esenciales , Antibacterianos/farmacología , Meropenem/farmacología , Peptidoglicano/metabolismo , Elementos Transponibles de ADN
8.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748545

RESUMEN

Borrelia burgdorferi is a pathogenic bacterium and the causative agent of Lyme disease. It is exposed to reactive oxygen species (ROS) in both the vertebrate and tick hosts. While some mechanisms by which B. burgdorferi ameliorates the effects of ROS exposure have been studied, there are likely other unknown mechanisms of ROS neutralization that contribute to virulence. Here, we follow up on a three gene cluster of unknown function, bb_0554, bb_0555, and bb_0556, that our prior unbiased transposon insertional sequencing studies implicated in both ROS survival and survival in Ixodes scapularis. We confirmed these findings through genetic knockout and provide evidence that these genes are co-transcribed as an operon to produce a xanthine dehydrogenase. In agreement with these results, we found that B. burgdorferi exposure to either uric acid (a product of xanthine dehydrogenase) or allopurinol (an inhibitor of xanthine dehydrogenase) could modulate sensitivity to ROS in a bb_0554-bb_0556 dependent manner. Together, this study identifies a previously uncharacterized three gene operon in B. burgdorferi as encoding a putative xanthine dehydrogenase critical for virulence. We propose renaming this locus xdhACB.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ratones , Borrelia burgdorferi/genética , Xantina Deshidrogenasa/genética , Especies Reactivas de Oxígeno , Enfermedad de Lyme/microbiología , Ixodes/microbiología
9.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745554

RESUMEN

The incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine ß-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.


Asunto(s)
Proteínas Bacterianas , Salmonella typhimurium , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Serogrupo , Transporte Biológico/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética
10.
Appl Microbiol Biotechnol ; 107(5-6): 1813-1827, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36729225

RESUMEN

The viable but nonculturable (VBNC) state is a dormant state of nonsporulating bacteria that enhances survival in adverse environments. Systematic genome-wide research on the genetic basis of VBNC formation is warranted. In this study, we demonstrated that the marine bacterium Vibrio alginolyticus lost culturability but remained viable and entered into the VBNC state when exposed to low nutrient concentrations for prolonged periods of time. Using transposon-insertion sequencing (Tn-seq), we identified 635 determinants governing the formation of the VBNC state, including 322 genes with defective effects on VBNC formation and 313 genes contributing to entry into the VBNC state. Tn-seq analysis revealed that genes involved in various metabolic pathways were shown to have an inhibitory effect on VBNC formation, while genes related to chemotaxis or folate biosynthesis promoted entry into the VBNC state. Moreover, the effects of these genes on the formation of VBNC were validated with the growth of deletion mutants of eight selected genes under nutrient-limited conditions. Interestingly, fleQ and pyrI were identified as essential for entry into the VBNC state, and they affected the formation of the VBNC state independent of RpoE or ToxR regulation. Collectively, these results provide new insights into the mechanism of VBNC formation. KEY POINTS: • Vibrio alginolyticus has the ability to enter into the VBNC state under low nutrient conditions at low temperature. • The 635 determinants for entry into the VBNC state were systematically identified by transposon-insertion sequencing. • PyrI and FleQ were validated to play significant roles in the formation of the VBNC state.


Asunto(s)
Frío , Vibrio alginolyticus , Viabilidad Microbiana
11.
Proc Natl Acad Sci U S A ; 117(30): 18010-18017, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32665440

RESUMEN

Mutant phenotype analysis of bacteria has been revolutionized by genome-scale screening procedures, but essential genes have been left out of such studies because mutants are missing from the libraries analyzed. Since essential genes control the most fundamental processes of bacterial life, this is a glaring deficiency. To address this limitation, we developed a procedure for transposon insertion mutant sequencing that includes essential genes. The method, called transformation transposon insertion mutant sequencing (TFNseq), employs saturation-level libraries of bacterial mutants generated by natural transformation with chromosomal DNA mutagenized heavily by in vitro transposition. The efficient mutagenesis makes it possible to detect large numbers of insertions in essential genes immediately after transformation and to follow their loss during subsequent growth. It was possible to order 45 essential processes based on how rapidly their inactivation inhibited growth. Inactivating ATP production, deoxyribonucleotide synthesis, or ribosome production blocked growth the fastest, whereas inactivating cell division or outer membrane protein synthesis blocked it the slowest. Individual mutants deleted of essential loci formed microcolonies of nongrowing cells whose sizes were generally consistent with the TFNseq ordering. The sensitivity of essential functions to genetic inactivation provides a metric for ranking their relative importance for bacterial replication and growth. Highly sensitive functions could represent attractive antibiotic targets since even partial inhibition should reduce growth.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Genes Bacterianos , Genes Esenciales , Viabilidad Microbiana/genética , Mutación , Tasa de Mutación , Eliminación de Secuencia
12.
Appl Environ Microbiol ; 88(23): e0124122, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36374093

RESUMEN

Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.


Asunto(s)
Gluconacetobacter , Simbiosis , Gluconacetobacter/genética , Fijación del Nitrógeno/genética , Nitrógeno
13.
Appl Environ Microbiol ; 88(14): e0064222, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862731

RESUMEN

Burkholderia vietnamiensis LMG10929 and Paraburkholderia kururiensis M130 are bacterial rice growth-promoting models. Besides this common ecological niche, species of the Burkholderia genus are also found as opportunistic human pathogens, while Paraburkholderia species are mostly environmental and plant associated. In this study, we compared the genetic strategies used by B. vietnamiensis and P. kururiensis to colonize two subspecies of their common host, Oryza sativa subsp. japonica (cv. Nipponbare) and O. sativa subsp. indica (cv. IR64). We used high-throughput screening of transposon insertional mutant libraries (Tn-seq) to infer which genetic elements have the highest fitness contribution during root surface colonization at 7 days postinoculation. Overall, we detected twice more genes in B. vietnamiensis involved in rice root colonization than in P. kururiensis, including genes contributing to the tolerance of plant defenses, which suggests a stronger adverse reaction of rice toward B. vietnamiensis than toward P. kururiensis. For both strains, the bacterial fitness depends on a higher number of genes when colonizing indica rice compared to japonica. These divergences in host pressure on bacterial adaptation could be partly linked to the cultivars' differences in nitrogen assimilation. We detected several functions commonly enhancing root colonization in both bacterial strains, e.g., Entner-Doudoroff (ED) glycolysis. Less frequently and more strain specifically, we detected functions limiting root colonization such as biofilm production in B. vietnamiensis and quorum sensing in P. kururiensis. The involvement of genes identified through the Tn-seq procedure as contributing to root colonization, i.e., ED pathway, c-di-GMP cycling, and cobalamin synthesis, was validated by directed mutagenesis and competition with wild-type (WT) strains in rice root colonization assays. IMPORTANCEBurkholderiaceae are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of Paraburkholderia have repeatedly been described to stimulate plant growth. However, the closely related Burkholderia genus includes both beneficial and phytopathogenic species, as well as species able to colonize animal hosts and cause disease in humans. We need to understand to what extent the bacterial strategies used for the different biotic interactions differ depending on the host and if strains with agricultural potential could also pose a threat toward other plant hosts or humans. To start answering these questions, we used in this study transposon sequencing to identify genetic traits in Burkholderia vietnamiensis and Paraburkholderia kururiensis that contribute to the colonization of two different rice varieties. Our results revealed large differences in the fitness gene sets between the two strains and between the host plants, suggesting a strong specificity in each bacterium-plant interaction.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Burkholderiaceae , Oryza , Animales , Burkholderia/metabolismo , Complejo Burkholderia cepacia/genética , Burkholderiaceae/genética , Humanos , Mutagénesis Insercional , Oryza/microbiología , Plantas/genética
14.
Appl Environ Microbiol ; 88(7): e0247921, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285680

RESUMEN

The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.


Asunto(s)
Monóxido de Carbono , Clostridium , Procesos Autotróficos , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Elementos Transponibles de ADN , Genoma Bacteriano , Mutagénesis Insercional
15.
New Phytol ; 233(2): 905-918, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655498

RESUMEN

Agrobacterium tumefaciens colonizes the galls (plant tumors) it causes, and the roots of host and nonhost plants. Transposon-sequencing (Tn-Seq) was used to discover A.tumefaciens genes involved in reproductive success (fitness genes) on Solanum lycopersicum and Populus trichocarpa tumors and S.lycopersicum and Zea mays roots. The identified fitness genes represent 3-8% of A. tumefaciens genes and contribute to carbon and nitrogen metabolism, synthesis and repair of DNA, RNA and proteins and envelope-associated functions. Competition assays between 12 knockout mutants and wild-type confirmed the involvement of 10 genes (trpB, hisH, metH, cobN, ntrB, trxA, nrdJ, kamA, exoQ, wbbL) in A.tumefaciens fitness under both tumor and root conditions. The remaining two genes (fecA, noxA) were important in tumors only. None of these mutants was nonpathogenic, but four (hisH, trpB, exoQ, ntrB) exhibited impaired virulence. Finally, we used this knowledge to search for chemical and biocontrol treatments that target some of the identified fitness pathways and report reduced tumorigenesis and impaired establishment of A.tumefaciens on tomato roots using tannic acid or Pseudomonas protegens, which affect iron assimilation. This work revealed A.tumefaciens pathways that contribute to its competitive survival in plants and highlights a strategy to identify plant protection approaches against this pathogen.


Asunto(s)
Agrobacterium tumefaciens , Solanum lycopersicum , Agrobacterium tumefaciens/genética , Carbono , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Raíces de Plantas/genética , Tumores de Planta/genética , Tumores de Planta/microbiología , Virulencia/genética
16.
Proc Natl Acad Sci U S A ; 116(20): 10072-10080, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036669

RESUMEN

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains of Pseudomonas aeruginosa on five different media and developed a statistical model, FiTnEss, to classify genes as essential versus nonessential across all strain-medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient in P. aeruginosa to converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


Asunto(s)
Genoma Bacteriano , Pseudomonas aeruginosa/genética , Elementos Transponibles de ADN , Genes Esenciales , Modelos Estadísticos
17.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562951

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen that can lead to severe infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Being an obligate aerobe, B. cenocepacia is unable to grow in the absence of oxygen. In this study, we show that the CF isolate B. cenocepacia H111 can survive in the absence of oxygen. Using a transposon sequencing (Tn-seq) approach, we identified 71 fitness determinants involved in anoxic survival, including a Crp-Fnr family transcriptional regulatory gene (anr2), genes coding for the sensor kinase RoxS and its response regulator RoxR, the sigma factor for flagella biosynthesis (FliA) and subunits of a cytochrome bd oxidase (CydA, CydB and the potentially novel subunit CydP). Individual knockouts of these fitness determinants significantly reduced anoxic survival, and inactivation of both anr copies is shown to be lethal under anoxic conditions. We also show that the two-component system RoxS/RoxR and FliA are important for virulence and swarming/swimming, respectively.


Asunto(s)
Infecciones por Burkholderia , Burkholderia cenocepacia , Fibrosis Quística , Burkholderia cenocepacia/fisiología , Humanos , Hipoxia , Oxígeno , Virulencia/genética
18.
J Bacteriol ; 203(24): e0040421, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34570624

RESUMEN

Azotobacter vinelandii is a nitrogen-fixing free-living soil microbe that has been studied for decades in relation to biological nitrogen fixation (BNF). It is highly amenable to genetic manipulation, helping to unravel the intricate importance of different proteins involved in the process of BNF, including the biosynthesis of cofactors that are essential to assembling the complex metal cofactors that catalyze the difficult reaction of nitrogen fixation. Additionally, A. vinelandii accomplishes this feat while growing as an obligate aerobe, differentiating it from many of the nitrogen-fixing bacteria that are associated with plant roots. The ability to function in the presence of oxygen makes A. vinelandii suitable for application in various potential biotechnological schemes. In this study, we employed transposon sequencing (Tn-seq) to measure the fitness defects associated with disruptions of various genes under nitrogen-fixing dependent growth, versus growth with extraneously provided urea as a nitrogen source. The results allowed us to probe the importance of more than 3,800 genes, revealing that many genes previously believed to be important, can be successfully disrupted without impacting cellular fitness. IMPORTANCE These results provide insights into the functional redundancy in A. vinelandii, while also providing a direct measure of fitness for specific genes associated with the process of BNF. These results will serve as a valuable reference tool in future studies to uncover the mechanisms that govern this process.


Asunto(s)
Azotobacter vinelandii/fisiología , Proteínas Bacterianas/metabolismo , Aptitud Genética , Nitrógeno/metabolismo , Urea/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Proteínas Bacterianas/genética , Secuencia de Bases , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Molibdeno
19.
J Bacteriol ; 203(12): e0056520, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33782056

RESUMEN

Acinetobacter baumannii is a poorly understood bacterium capable of life-threatening infections in hospitals. Few antibiotics remain effective against this highly resistant pathogen. Development of rationally designed antimicrobials that can target A. baumannii requires improved knowledge of the proteins that carry out essential processes allowing growth of the organism. Unfortunately, studying essential genes has been challenging using traditional techniques, which usually require time-consuming recombination-based genetic manipulations. Here, we performed saturating mutagenesis with dual transposon systems to identify essential genes in A. baumannii, and we developed a CRISPR interference (CRISPRi) system for facile analysis of these genes. We show that the CRISPRi system enables efficient transcriptional silencing in A. baumannii. Using these tools, we confirmed the essentiality of the novel cell division protein AdvA and discovered a previously uncharacterized AraC family transcription factor (ACX60_RS03245) that is necessary for growth. In addition, we show that capsule biosynthesis is a conditionally essential process, with mutations in late-acting steps causing toxicity in strain ATCC 17978 that can be bypassed by blocking early-acting steps or activating the BfmRS stress response. These results open new avenues for analysis of essential pathways in A. baumannii. IMPORTANCE New approaches are urgently needed to control A. baumannii, one of the most drug-resistant pathogens known. To facilitate the development of novel targets that allow inhibition of the pathogen, we performed a large-scale identification of genes whose products the bacterium needs for growth. We also developed a CRISPR-based gene knockdown tool that operates efficiently in A. baumannii, allowing rapid analysis of these essential genes. We used these methods to define multiple processes vital to the bacterium, including a previously uncharacterized gene regulatory factor and export of a protective polymeric capsule. These tools will enhance our ability to investigate processes critical for the essential biology of this challenging hospital-acquired pathogen.


Asunto(s)
Acinetobacter baumannii/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos Transponibles de ADN/fisiología , Cápsulas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN/genética , Regulación Bacteriana de la Expresión Génica , Técnicas de Silenciamiento del Gen , Mutagénesis
20.
J Bacteriol ; 203(15): e0017121, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031038

RESUMEN

Hydroxyurea (HU) is classified as a ribonucleotide reductase (RNR) inhibitor and has been widely used to stall DNA replication by depleting deoxyribonucleoside triphosphate (dNTP) pools. Recent evidence in Escherichia coli shows that HU readily forms breakdown products that damage DNA directly, indicating that toxicity is a result of secondary effects. Because HU is so widely used in the laboratory and as a clinical therapeutic, it is important to understand its biological effects. To determine how Bacillus subtilis responds to HU-induced stress, we performed saturating transposon insertion mutagenesis followed by deep sequencing (Tn-seq), transcriptome sequencing (RNA-seq) analysis, and measurement of replication fork progression. Our data show that B. subtilis cells elongate, and replication fork progression is slowed, following HU challenge. The transcriptomic data show that B. subtilis cells initially mount a metabolic response likely caused by dNTP pool depletion before inducing the DNA damage response (SOS) after prolonged exposure. To compensate for reduced nucleotide pools, B. subtilis upregulates the purine and pyrimidine biosynthetic machinery and downregulates the enzymes producing ribose 5-phosphate. We show that overexpression of the RNR genes nrdEF suppresses the growth interference caused by HU, suggesting that RNR is an important target of HU in B. subtilis. Although genes involved in nucleotide and carbon metabolism showed considerable differential expression, we also find that genes of unknown function (y-genes) represent the largest class of differentially expressed genes. Deletion of individual y-genes caused moderate growth interference in the presence of HU, suggesting that cells have several ways of coping with HU-induced metabolic stress. IMPORTANCE Hydroxyurea (HU) has been widely used as a clinical therapeutic and an inhibitor of DNA replication. Some evidence suggests that HU inhibits ribonucleotide reductase, depleting dNTP pools, while other evidence shows that toxic HU breakdown products are responsible for growth inhibition and genotoxic stress. Here, we use multiple, complementary approaches to characterize the response of Bacillus subtilis to HU. B. subtilis responds by upregulating the expression of purine and pyrimidine biosynthesis. We show that HU challenge reduced DNA replication and that overexpression of the ribonucleotide reductase operon suppressed growth interference by HU. Our results demonstrate that HU targets RNR and several other metabolic enzymes contributing to toxicity in bacteria.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Replicación del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Nucleótidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN/efectos de los fármacos , Operón , Purinas/metabolismo , Pirimidinas/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda