Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.653
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(17): 3674-3685.e14, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37494934

RESUMEN

Epigenetic lesions that disrupt regulatory elements represent potential cancer drivers. However, we lack experimental models for validating their tumorigenic impact. Here, we model aberrations arising in isocitrate dehydrogenase-mutant gliomas, which exhibit DNA hypermethylation. We focus on a CTCF insulator near the PDGFRA oncogene that is recurrently disrupted by methylation in these tumors. We demonstrate that disruption of the syntenic insulator in mouse oligodendrocyte progenitor cells (OPCs) allows an OPC-specific enhancer to contact and induce Pdgfra, thereby increasing proliferation. We show that a second lesion, methylation-dependent silencing of the Cdkn2a tumor suppressor, cooperates with insulator loss in OPCs. Coordinate inactivation of the Pdgfra insulator and Cdkn2a drives gliomagenesis in vivo. Despite locus synteny, the insulator is CpG-rich only in humans, a feature that may confer human glioma risk but complicates mouse modeling. Our study demonstrates the capacity of recurrent epigenetic lesions to drive OPC proliferation in vitro and gliomagenesis in vivo.


Asunto(s)
Neoplasias Encefálicas , Epigénesis Genética , Glioma , Animales , Humanos , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN , Glioma/genética , Glioma/patología , Isocitrato Deshidrogenasa/genética , Mutación , Oncogenes , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
2.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32841603

RESUMEN

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/genética , División Celular , Senescencia Celular/genética , Secuenciación de Inmunoprecipitación de Cromatina , Cromosomas/genética , Estudios de Cohortes , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Metilación de ADN/genética , Epigenómica , Células HCT116 , Humanos , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , RNA-Seq , Análisis Espacial , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Annu Rev Cell Dev Biol ; 37: 199-232, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34228506

RESUMEN

Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , ADN , Genoma , Hibridación Fluorescente in Situ
4.
Cell ; 175(2): 583-597.e23, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220456

RESUMEN

When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.


Asunto(s)
Cromosomas Bacterianos/fisiología , ADN Bacteriano/química , ADN Superhelicoidal/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Estructuras Cromosómicas/fisiología , Cromosomas Bacterianos/metabolismo , ADN/fisiología , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN Bacteriano/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Cinética
5.
Mol Cell ; 84(5): 822-838.e8, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38157845

RESUMEN

Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.


Asunto(s)
Cromatina , Cromosomas , Animales , Hibridación Fluorescente in Situ , Cromatina/genética , Drosophila/genética
6.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38521067

RESUMEN

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Asunto(s)
Cromosomas , ADN-Topoisomerasas de Tipo II , ADN-Topoisomerasas de Tipo II/genética , Cromosomas/genética , Mitosis/genética , Interfase/genética , Polímeros
7.
Mol Cell ; 84(6): 1101-1119.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38428433

RESUMEN

Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.


Asunto(s)
Membranas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Animales , Membranas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
8.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38452764

RESUMEN

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Oncogenes , ADN/química
9.
Mol Cell ; 84(10): 1917-1931.e15, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38723633

RESUMEN

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.


Asunto(s)
Retículo Endoplásmico , Pliegue de Proteína , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/química , Células HEK293 , Dominios Proteicos , Interacciones Hidrofóbicas e Hidrofílicas , Procesamiento Proteico-Postraduccional , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/química
10.
Mol Cell ; 83(6): 961-973.e7, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36764302

RESUMEN

Most membrane proteins use their first transmembrane domain, known as a signal anchor (SA), for co-translational targeting to the endoplasmic reticulum (ER) via the signal recognition particle (SRP). The SA then inserts into the membrane using either the Sec61 translocation channel or the ER membrane protein complex (EMC) insertase. How EMC and Sec61 collaborate to ensure SA insertion in the correct topology is not understood. Using site-specific crosslinking, we detect a pre-insertion SA intermediate adjacent to EMC. This intermediate forms after SA release from SRP but before ribosome transfer to Sec61. The polypeptide's N-terminal tail samples a cytosolic vestibule bordered by EMC3, from where it can translocate across the membrane concomitant with SA insertion. The ribosome then docks on Sec61, which has an opportunity to insert those SAs skipped by EMC. These results suggest that EMC acts between SRP and Sec61 to triage SAs for insertion during membrane protein biogenesis.


Asunto(s)
Proteínas de la Membrana , Triaje , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
11.
Mol Cell ; 83(9): 1412-1428.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098340

RESUMEN

During postnatal development, the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This methylation is critical for transcriptional regulation, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). Here, we show in mice that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, an H3K36 methyltransferase mutated in NDD, is required for the patterning of megabase-scale H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes altered DNA methylation that overlaps with DNMT3A disorder models to drive convergent dysregulation of key neuronal genes that may underlie shared phenotypes in NSD1- and DNMT3A-associated NDDs. Our findings indicate that H3K36me2 deposited by NSD1 is important for neuronal non-CG DNA methylation and suggest that the H3K36me2-DNMT3A-non-CG-methylation pathway is likely disrupted in NSD1-associated NDDs.


Asunto(s)
Metilación de ADN , Histonas , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neuronas/metabolismo
12.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
13.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802026

RESUMEN

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , ADN/genética , Pinzas Ópticas
14.
Mol Cell ; 82(9): 1751-1767.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35320753

RESUMEN

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , Autoantígenos/genética , Autoantígenos/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Humanos
15.
Mol Cell ; 82(22): 4277-4289.e10, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36283413

RESUMEN

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Señales de Clasificación de Proteína , Pliegue de Proteína , Mamíferos/metabolismo
16.
Mol Cell ; 82(1): 140-158.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34890565

RESUMEN

High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Neoplasias/enzimología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Animales , Replicación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN de Neoplasias/biosíntesis , ADN de Neoplasias/genética , ADN Superhelicoidal/biosíntesis , ADN Superhelicoidal/genética , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Células K562 , Complejos Multienzimáticos , Neoplasias/genética , Neoplasias/patología , Proteínas de Unión a Poli-ADP-Ribosa/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Ratas
17.
Mol Cell ; 82(5): 1003-1020.e15, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182476

RESUMEN

Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.


Asunto(s)
Cromatina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Cromatina/genética , Reposicionamiento de Medicamentos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Cell ; 82(21): 4160-4175.e6, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36272409

RESUMEN

CRISPR-Cas9-mediated genome editing depends on PAM recognition to initiate DNA unwinding. PAM mutations can abolish Cas9 binding and prohibit editing. Here, we identified a Cas9 from the thermophile Alicyclobacillus tengchongensis for which the PAM interaction can be robustly regulated by DNA topology. AtCas9 has a relaxed PAM of N4CNNN and N4RNNA (R = A/G) and is able to bind but not cleave targets with mutated PAMs. When PAM-mutated DNA was in underwound topology, AtCas9 exhibited enhanced binding affinity and high cleavage activity. Mechanistically, AtCas9 has a unique loop motif, which docked into the DNA major groove, and this interaction can be regulated by DNA topology. More importantly, AtCas9 showed near-PAMless editing of supercoiled plasmid in E. coli. In mammalian cells, AtCas9 exhibited broad PAM preference to edit plasmid with up to 72% efficiency and effective base editing at four endogenous loci, representing a potentially powerful tool for near-PAMless editing.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , ADN/genética , Plásmidos , Mamíferos/metabolismo
19.
Mol Cell ; 82(21): 4145-4159.e7, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36206765

RESUMEN

Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.


Asunto(s)
ADN Circular , Complejos Multiproteicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/química , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Cromosomas/metabolismo , Plásmidos/genética , ADN/genética , Bacterias/genética
20.
Genes Dev ; 36(7-8): 451-467, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35450883

RESUMEN

Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.


Asunto(s)
Leucemia Promielocítica Aguda , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Humanos , Factor 4 Similar a Kruppel , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda