RESUMEN
The aims of the present research were to evaluate the health risk of long-term exposure to polycyclic aromatic hydrocarbons (PAHs) concerning the human, ecotoxicological risk for marine biota, and identify their possible sources. Surface sediment bioassay samples were collected from 15 stations of tourist beaches surrounding Bushehr City and analyzed using high performance liquid chromatography (HPLC). The results indicated the concentrations of ∑PAH ranged from 193.5 to 725.5 ng g-1 with mean value of 351.1 ± 155.2 ng g-1, which could be considered as moderate level of pollution. Measured levels of PAH in sediments were compared with sediment quality guidelines (SQGs), indicating low to medium ecotoxicological risk on marine organisms. Moreover, mean ERM quotient (M-ERM-Q) and mean PEL quotient (M-PEL-Q) were implemented, demonstrating potentially biological adverse effects. A preliminary evaluation of human health risk using incremental lifetime cancer risk (ILCR) and toxic equivalent quotient (TEQcarc) indicated that PAH-contaminated sediment in some stations of touristic beaches of Bushehr City would induce potential carcinogenic effects especially for children. Composition and diagnostic analysis indicated that PAHs originated from both pyrogenic and petrogenic, with higher portion of incomplete combustion PAHs.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Niño , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Natación , Contaminantes Químicos del Agua/análisisRESUMEN
Urban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of human absence in these urban-coastal ecosystems. This study examined bioindicators from 29 urban tourist beaches in seven Latin-American countries and assesses their response to lockdown about some relevant anthropogenic stressors such as pollution, noise, human activities, and user density. The presence of animals and plants, as well as the intensity of stressors, were assessed through a standardized protocol during lockdown conditions. Additionally, the environmental conditions of the beaches before and during lockdown were qualitatively compared using multivariate non-parametric statistics. We found notable positive changes in biological components and a clear decrease in human stressors on almost all the beaches. Dune vegetation increased on most sites. Similarly, high burrow densities of ghost crabs were observed on beaches, except those where cleaning activity persisted. Because of the lockdown, there was an exceptionally low frequency of beach users, which in turn reduced litter, noise and unnatural odors. The observed patterns suggest that tourist beaches can be restored to natural settings relatively quickly. We propose several indicators to measure changes in beaches once lockdown is relaxed. Adequate conservation strategies will render the recreational service of tourist beaches more environmental-friendly.
RESUMEN
Human interaction with marine creatures holds both positive and negative dimensions. Coastal communities benefit from marine environments, relying on them for sustenance and livelihoods. Fishing activities support economies, and marine biodiversity contributes to overall ecosystem health. However, challenges like overfishing, habitat destruction, and pollution pose threats to both marine life and human communities. Recently, there has been widespread concern regarding the potential increase in jellyfish populations across global marine ecosystems, attributed mainly to environmental factors such as climate drivers and anthropogenic forces, or their complex interactions. Encounters with hazardous marine species, such as box jellyfish, exemplify the dangers associated with coastal activities. Unintended interactions may lead to stings, injuries, and even fatalities, necessitating proactive measures and advanced technologies. This study addresses the inadequacies of existing measures in preventing box jellyfish incidents by introducing environmental DNA (eDNA) assays for detecting the deadly Chiropsoides buitendijki and focuses on developing qPCR and dPCR-based eDNA assays. Emphasising prevention over treatment, the study establishes a proactive system to assess C. buitendijki distribution across 63 tourist beaches in the Gulf of Thailand. Comparative analysis highlights the superior performance of dPCR over qPCR and traditional surveys. The dPCR experiment yielded positive results for all eDNA samples collected at sites where C. buitendijki had previously been identified. Remarkably, the eDNA testing also detected positive results in 16 additional sample locations where no physical specimens were collected, despite reported jellyfish stings at some of these sites. These findings underscore the precision and efficacy of the proposed eDNA detection technology in the early detection and assessment of box jellyfish distribution. This advancement therefore not only aids ecological research but also serves as a valuable tool for safeguarding public health, providing an early warning system for potential jellyfish encounters. Balancing positive human-marine interactions with effective risk mitigation strategies is crucial for sustainable coexistence, the preservation of marine ecosystems, and human well-being.
Asunto(s)
ADN Ambiental , Monitoreo del Ambiente , Animales , Tailandia , Monitoreo del Ambiente/métodos , ADN Ambiental/análisis , Cubomedusas , Gestión de Riesgos/métodos , Ecosistema , Especificidad de la EspecieRESUMEN
The concentration of Acid Leachable Trace Metals (ALTMs) was assessed in urbanized tourist beaches (96 samples from Marina beach, 34 samples from Edward Elliot's beach, and 28 samples from Silver beach) of southeast coast of India. The concentration of metals accumulated in the beach sediment was less than the Upper Continental Crust (UCC) background reference values. The mean enrichment of ALTMs in the studied urban tourist beaches showed the following descending order: Marina beach - Cr > Pb > Ni > Zn > Cu > Mn > Co; Edward Elliot's beach - Cr > Pb > Ni > Mn > Co > Zn > Cu; Silver beach - Cr > Pb > Ni > Co > Mn > Cu > Zn. The ALTMs such as Fe, Mn, Co, Cu, and Zn were probably derived from natural weathering and mild anthropogenic influences whereas other metals were derived from anthropogenic induced factors.
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , India , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
Metal/metalloid concentrations in water sediment and commercial fishes of Loreto Maritime National Park (MNP), Baja California Sur, Mexico were determined for a comprehensive geochemical study. In-situ physical characteristics (pH, conductivity, redox potential, dissolved oxygen, turbidity) of water clearly indicated the unique oceanographic properties of the Gulf of California. Likewise, the distribution pattern of metals/metalloid in water, sediments and fishes denoted the influences of local geology, longshore currents, upwelling process, natural hydrothermal vents and the 100-year old mining activities of Santa Rosalia region, situated to the north of Loreto. Calculated carcinogenic indices in commercial fish species showed safe human consumption. Thus, the present research validates a comprehensive geochemical study of protected areas upholding the need for continuous monitoring for a better conservation of coastal ecosystems.