Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 40(10): e106188, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33881780

RESUMEN

Tumour progression locus 2 (TPL-2) kinase mediates Toll-like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase-independent regulatory function for TPL-2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL-2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL-2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V-ATPase proton pump subunits. Furthermore, TPL-2 stimulated the phosphorylation of DMXL1, a regulator of V-ATPases, to induce V-ATPase assembly and phagosome acidification. Consistent with these results, TPL-2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL-2 therefore controls innate immune responses of macrophages to bacteria via V-ATPase induction of phagosome maturation.


Asunto(s)
Macrófagos/metabolismo , Fagosomas/metabolismo , Animales , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Fosforilación/fisiología , Proteínas/metabolismo , Transducción de Señal/fisiología , Staphylococcus aureus/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994673

RESUMEN

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Asunto(s)
Aconitato Hidratasa , Quinasas Quinasa Quinasa PAM , Proteína Quinasa 12 Activada por Mitógenos , Proteína Quinasa 13 Activada por Mitógenos , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/genética , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , ARN Mensajero/genética
3.
Cell Mol Life Sci ; 79(3): 156, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218437

RESUMEN

Signaling through adhesion-related molecules is important for cancer growth and metastasis and cancer cells are resistant to anoikis, a form of cell death ensued by cell detachment from the extracellular matrix. Herein, we report that detached carcinoma cells and immortalized fibroblasts display defects in TNF and CD40 ligand (CD40L)-induced MEK-ERK signaling. Cell detachment results in reduced basal levels of the MEK kinase TPL2, compromises TPL2 activation and sensitizes carcinoma cells to death-inducing receptor ligands, mimicking the synthetic lethal interactions between TPL2 inactivation and TNF or CD40L stimulation. Focal Adhesion Kinase (FAK), which is activated in focal adhesions and mediates anchorage-dependent survival signaling, was found to sustain steady state TPL2 protein levels and to be required for TNF-induced TPL2 signal transduction. We show that when FAK levels are reduced, as seen in certain types of malignancy or malignant cell populations, the formation of cIAP2:RIPK1 complexes increases, leading to reduced TPL2 expression levels by a dual mechanism: first, by the reduction in the levels of NF-κΒ1 which is required for TPL2 stability; second, by the engagement of an RelA NF-κΒ pathway that elevates interleukin-6 production, leading to activation of STAT3 and its transcriptional target SKP2 which functions as a TPL2 E3 ubiquitin ligase. These data underscore a new mode of regulation of TNF family signal transduction on the TPL2-MEK-ERK branch by adhesion-related molecules that may have important ramifications for cancer therapy.


Asunto(s)
Adhesión Celular , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Animales , Ligando de CD40/genética , Ligando de CD40/metabolismo , Ligando de CD40/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
4.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36240653

RESUMEN

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Asunto(s)
Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(28): 14039-14048, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239343

RESUMEN

Most normal and tumor cells are protected from tumor necrosis factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 kinase tumor progression locus-2 (TPL2) as a player contributing to the protection of a subset of tumor cell lines. The combination of TPL2 knockdown and TNFα gives rise to a synthetic lethality phenotype via receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent and -independent mechanisms. Whereas wild-type TPL2 rescues the phenotype, its kinase-dead mutant does not. Comparison of the molecular events initiated by small interfering RNA for TPL2 (siTPL2) ± TNFα in treatment-sensitive and -resistant lines revealed that the activation of caspase-8, downstream of miR-21-5p and cFLIP, is the dominant TPL2-dependent event. More important, comparison of the gene expression profiles of all of the tested cell lines results in the clustering of sensitive and resistant lines into distinct groups, providing proof of principle for the feasibility of generating a predictive tool for treatment sensitivity.


Asunto(s)
Carcinoma/genética , Inhibidores de Caspasas/farmacología , Quinasas Quinasa Quinasa PAM/genética , Proteínas Proto-Oncogénicas/genética , Factor de Necrosis Tumoral alfa/genética , Apoptosis/genética , Carcinoma/tratamiento farmacológico , Carcinoma/patología , Caspasa 8/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Macrófagos/metabolismo , MicroARNs/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal , Mutaciones Letales Sintéticas/genética
6.
Toxicol Appl Pharmacol ; 418: 115494, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722668

RESUMEN

Tumor progression locus 2 (Tpl2, gene name MAP3K8), a mitogen-activated protein kinase, is widely expressed in immune and non-immune cells to integrate tumor necrosis factor (TNF), toll-like receptors (TLRs), and interleukin-1 (IL1) receptor signaling to regulate inflammatory response. Given its central role in inflammatory response, Tpl2 is an attractive small molecule drug target. However, the role of Tpl2 as an oncogene or tumor suppressor gene remains controversial, and its function outside immune cells is not understood. We therefore utilized a Tpl2 kinase dead (Tpl2-KD) mouse model in an 18-month aging study to further elucidate Tpl2 effects on lifespan and chronic disease. Histopathological studies revealed the incidence and severity of spontaneous tumors and non-neoplastic lesions were comparable between wild type and Tpl2-KD mice. The only finding was that male Tpl2-KD mice had higher bodyweight and an increased incidence of liver steatosis, suggesting a sex-specific role for Tpl2 in hepatic lipid metabolism. In conclusion, loss of Tpl2 kinase activity did not lead to increased tumorigenesis over aging in mice but affected likely alterations in lipid metabolism in male animals.


Asunto(s)
Hígado Graso/enzimología , Inflamación/enzimología , Hígado/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Edad , Animales , Hígado Graso/genética , Hígado Graso/patología , Femenino , Genotipo , Inflamación/genética , Metabolismo de los Lípidos , Hígado/patología , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Fenotipo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Factores Sexuales
7.
Circ Res ; 121(6): e37-e52, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724746

RESUMEN

RATIONALE: Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. OBJECTIVE: TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of Nε-(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. METHODS AND RESULTS: Serum Nε-(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between Nε-(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). CONCLUSIONS: This study demonstrates that inhibiting the Nε-(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Quimiocina CXCL12/metabolismo , Retinopatía Diabética/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/sangre , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal
8.
Biochem J ; 475(1): 329-340, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29229763

RESUMEN

The MKK1/2 kinase tumour progression locus 2 (TPL-2) is critical for the production of tumour necrosis factor alpha (TNFα) in innate immune responses and a potential anti-inflammatory drug target. Several earlier pharmaceutical company screens with the isolated TPL-2 kinase domain have identified small-molecule inhibitors that specifically block TPL-2 signalling in cells, but none of these have progressed to clinical development. We have previously shown that TPL-2 catalytic activity regulates TNF production by macrophages while associated with NF-κB1 p105 and ABIN-2, independently of MKK1/2 phosphorylation via an unknown downstream substrate. In the present study, we used a positional scanning peptide library to determine the optimal substrate specificity of a complex of TPL-2, NF-κB1 p105 and ABIN-2. Using an optimal peptide substrate based on this screen and a high-throughput mass spectrometry assay to monitor kinase activity, we found that the TPL-2 complex has significantly altered sensitivities versus existing ATP-competitive TPL-2 inhibitors than the isolated TPL-2 kinase domain. These results imply that screens with the more physiologically relevant TPL-2/NF-κB1 p105/ABIN-2 complex have the potential to deliver novel TPL-2 chemical series; both ATP-competitive and allosteric inhibitors could emerge with significantly improved prospects for development as anti-inflammatory drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antiinflamatorios/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Subunidad p50 de NF-kappa B/antagonistas & inhibidores , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Antiinflamatorios/síntesis química , Expresión Génica , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Biblioteca de Péptidos , Péptidos/síntesis química , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844241

RESUMEN

Tumor progression locus 2 (TPL2), a serine/threonine protein kinase, is a major inflammatory mediator in immune cells. The predominant inflammatory actions of TPL2 depend on the activation of mitogen-activated protein kinases (MAPK) and the upregulated production of the cytokines tumor necrosis factor alpha (TNF-α) and interleukin 1ß (IL-1ß) in macrophages and dendritic cells in response to lipopolysaccharide (LPS). Significant increases in TNF-α, IL-6, IL-ß, and IL-8 levels in patients with Clostridium difficile infection (CDI) have been reported. Both TNF-α and IL-6 have been postulated to play key roles in the systemic inflammatory response in CDI, and IL-8 is essential for the development of local intestinal inflammatory responses in CDI. The objective of this study was to elucidate the role of TPL2 in the pathogenesis of CDI. We found that TPL2 was significantly activated in human and mouse intestinal tissues upon C. difficile toxin exposure or CDI. We further demonstrated that TPL2 knockout (TPL2-KO) mice were significantly more resistant to CDI than wild-type mice, with significantly reduced production of TNF-α, IL-6, IL-1ß, KC (a mouse homologue of IL-8), and myeloperoxidase (MPO) in the ceca and colons of TPL2-KO mice. Finally, we found that TPL2 inhibition by a specific inhibitor or TPL2 gene ablation significantly reduced TcdB-induced production of TNF-α, IL-6, IL-ß, and KC by inhibiting the activation of p38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK). Taken together, our data suggest that TPL2 represents a potential therapeutic target for CDI treatment.


Asunto(s)
Infecciones por Clostridium/patología , Inflamación/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Western Blotting , Ciego/patología , Colon/patología , Citocinas/análisis , Susceptibilidad a Enfermedades , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasa/análisis , Proteínas Proto-Oncogénicas/deficiencia , Transducción de Señal
10.
Pharmacol Res ; 129: 188-193, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29183769

RESUMEN

Tumor progression locus 2 (TPL2, also known as COT or MAP3K8) is a mitogen-activated protein kinase kinase (MAP3K) activated downstream of TNFαR, IL1R, TLR, CD40, IL17R, and some GPCRs. TPL2 regulates the MEK1/2 and ERK1/2 pathways to regulate a cascade of inflammatory responses. In parallel to this, TPL2 also activates p38α and p38δ to drive the production of various inflammatory mediators in neutrophils. We discuss the implications of this finding in the context of various inflammatory diseases.


Asunto(s)
Inflamación/metabolismo , Quinasas Quinasa Quinasa PAM/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Autoinmunidad , Humanos , Quinasas Quinasa Quinasa PAM/química , Proteínas Proto-Oncogénicas/química
11.
J Allergy Clin Immunol ; 139(2): 655-666.e7, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27484038

RESUMEN

BACKGROUND: The molecular and cellular pathways driving the pathogenesis of severe asthma are poorly defined. Tumor progression locus 2 (TPL-2) (COT, MAP3K8) kinase activates the MEK1/2-extracellular-signal regulated kinase 1/2 MAP kinase signaling pathway following Toll-like receptor, TNFR1, and IL-1R stimulation. OBJECTIVE: TPL-2 has been widely described as a critical regulator of inflammation, and we sought to investigate the role of TPL-2 in house dust mite (HDM)-mediated allergic airway inflammation. METHODS: A comparative analysis of wild-type and Map3k8-/- mice was conducted. Mixed bone marrow chimeras, conditional knockout mice, and adoptive transfer models were also used. Differential cell counts were performed on the bronchoalveolar lavage fluid, followed by histological analysis of lung sections. Flow cytometry and quantitative PCR was used to measure type 2 cytokines. ELISA was used to assess the production of IgE, type 2 cytokines, and Ccl24. RNA sequencing was used to characterize dendritic cell (DC) transcripts. RESULTS: TPL-2 deficiency led to exacerbated HDM-induced airway allergy, with increased airway and tissue eosinophilia, lung inflammation, and IL-4, IL-5, IL-13, and IgE production. Increased airway allergic responses in Map3k8-/- mice were not due to a cell-intrinsic role for TPL-2 in T cells, B cells, or LysM+ cells but due to a regulatory role for TPL-2 in DCs. TPL-2 inhibited Ccl24 expression in lung DCs, and blockade of Ccl24 prevented the exaggerated airway eosinophilia and lung inflammation in mice given HDM-pulsed Map3k8-/- DCs. CONCLUSIONS: TPL-2 regulates DC-derived Ccl24 production to prevent severe type 2 airway allergy in mice.


Asunto(s)
Asma/inmunología , Quimiocina CCL24/metabolismo , Células Dendríticas/inmunología , Eosinófilos/inmunología , Pulmón/inmunología , Quinasas Quinasa Quinasa PAM/metabolismo , Neumonía/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Citocinas/metabolismo , Inmunoglobulina E/sangre , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Pyroglyphidae/inmunología , Transducción de Señal , Células Th2/inmunología
12.
Biochem J ; 473(18): 2845-61, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402796

RESUMEN

Previous studies suggested that Toll-like receptor (TLR) stimulation of the p38α MAP kinase (MAPK) is mediated by transforming growth factor-ß-activated kinase 1 (TAK1) activation of MAPK kinases, MKK3, MKK4 and MKK6. We used quantitative mass spectrometry to monitor tumour progression locus 2 (TPL-2)-dependent protein phosphorylation following TLR4 stimulation with lipopolysaccharide, comparing macrophages from wild-type mice and Map3k8(D270A/D270A) mice expressing catalytically inactive TPL-2 (MAP3K8). In addition to the established TPL-2 substrates MKK1/2, TPL-2 kinase activity was required to phosphorylate the activation loops of MKK3/6, but not of MKK4. MKK3/6 activation required IκB kinase (IKK) phosphorylation of the TPL-2 binding partner nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB1) p105, similar to MKK1/2 activation. Tumour necrosis factor (TNF) stimulation of MKK3/6 phosphorylation was similarly dependent on TPL-2 catalytic activity and IKK phosphorylation of NF-κB1 p105. Owing to redundancy of MKK3/6 with MKK4, Map3k8(D270A) mutation only fractionally decreased lipopolysaccharide activation of p38α. TNF activation of p38α, which is mediated predominantly via MKK3/6, was substantially reduced. TPL-2 catalytic activity was also required for MKK3/6 and p38α activation following macrophage stimulation with Mycobacterium tuberculosis and Listeria monocytogenes Our experiments demonstrate that the IKK/NF-κB1 p105/TPL-2 signalling pathway, downstream of TAK1, regulates MKK3/6 and p38α activation in macrophages in inflammation.


Asunto(s)
Macrófagos/enzimología , Proteínas Quinasas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Toll-Like/metabolismo , Animales , Activación Enzimática , Espectrometría de Masas , Ratones
13.
Phytomedicine ; 125: 155346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237511

RESUMEN

BACKGROUND: Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE: A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS: Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS: In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION: The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.


Asunto(s)
Lesión Renal Aguda , Saponinas , Sepsis , Triterpenos , Masculino , Ratones , Animales , Lipocalina 2/efectos adversos , Lipopolisacáridos/efectos adversos , Ratones Endogámicos C57BL , Lesión Renal Aguda/inducido químicamente , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , ARN Interferente Pequeño , Inflamación
14.
Cell Rep ; 43(9): 114667, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39178114

RESUMEN

Loss-of-function mutations in the C terminus of TPL2 kinase promote oncogenesis by impeding its proteasomal degradation, leading to sustained protein expression. However, the degradation mechanism for TPL2 has remained elusive. Through proximity-dependent biotin identification (BioID), we uncovered tripartite motif-containing 4 (TRIM4) as the E3 ligase that binds and degrades TPL2 by polyubiquitination of lysines 415 and 439. The naturally occurring TPL2 mutants R442H and E188K exhibit impaired TRIM4 binding, enhancing their stability. We further discovered that TRIM4 itself is stabilized by another E3 ligase, TRIM21, which in turn is regulated by KRAS. Mutant KRAS recruits RNF185 to degrade TRIM21 and subsequently TRIM4, thereby stabilizing TPL2. In the presence of mutant KRAS, TPL2 phosphorylates and degrades GSK3ß, resulting in ß-catenin stabilization and activation of the Wnt pathway. These findings elucidate the physiological mechanisms regulating TPL2 and its exploitation by mutant KRAS, underscoring the need to develop TPL2 inhibitors for KRAS-mutant cancers.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Ubiquitina-Proteína Ligasas , Animales , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Mutación/genética , Fosforilación , Unión Proteica , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Vía de Señalización Wnt
15.
Biochem Biophys Res Commun ; 441(3): 689-692, 2013 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-24513215

RESUMEN

Excessive inflammation and Pseudomonas aeruginosa infection are two major characteristics of cystic fibrosis (CF) lung disease. In this manuscript, we describe a novel mechanism of ERK1/ERK2 activation and CXCL8 expression in AECs lacking functional CFTR. In both non-CF and CF airway epithelial cells (AECs), the protein kinase TPL2 is required for ERK1/ERK2 MAPK activation. However, we have found that EGFR is strongly phosphorylated in the airway epithelium of CF lung and contributes to ERK1/ERK2 MAPK activation in CF AECs exposed to P. aeruginosa diffusible material (PsaDM). Moreover, PsaDM stimulates the expression of the EGFR pro-ligand HB-EGF more strongly, and in a sustained manner, in CF AECs compared to non-CF cells. Finally, although both non-CF and CF AECs expresses CXCL8 in response to PsaDM, the levels of CXCL8 are higher and EGFR plays a more important role in regulating CXCL8 synthesis in CF AECs. Together, our finding shows that in addition to the TLR-mediated TPL2 activation of ERK1/ERK2, an additional pathway contributing to ERK1/ERK2 activation is triggered by infection of CF AECs: the EGFR signalling pathway. This second pathway may contribute to excessive inflammation observed in CF.

16.
Inflammation ; 46(1): 322-341, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36227523

RESUMEN

The most prominent host response to viral infection is the production of type 1 interferons (T1 IFNs). One host regulator of the T1 IFNs is the serine-threonine kinase, tumor progression locus 2 (TPL2). We have previously demonstrated that Tpl2-/- mice succumb to infection with a low-pathogenicity influenza A strain (x31), in association with with increased pulmonary levels of interferon-ß (IFN-ß), chemokine CCL2, and excessive monocyte and neutrophil pulmonary infiltration. TPL2-dependent overexpression of IFN-ß has been implicated in enhanced susceptibility to Mycobacterium tuberculosis; therefore, we examined the role of T1 IFNs in susceptibility of Tpl2-/- mice to influenza. CCL2 overexpression and monocyte recruitment were normalized in Ifnar1-/-Tpl2-/- mice, confirming that TPL2 constrains inflammatory monocyte recruitment via inhibition of the T1 IFN/CCL2 axis. Unexpectedly, excessive neutrophil recruitment in Ifnar1-/- strains was further exacerbated by simultaneous TPL2 genetic ablation in Ifnar1-/-Tpl2-/- by 7 dpi, accompanied by overexpression of neutrophil-regulating cytokines, CXCL1 and IFN-λ. Collectively, our data suggest that TPL2 and T1 IFNs synergize to inhibit neutrophil recruitment. However, treatment with the neutrophil-depleting anti-Ly6G antibody showed only a modest improvement in disease. Analysis of sorted innate immune populations revealed redundant expression of inflammatory mediators among neutrophils, inflammatory monocytes and alveolar macrophages. These findings suggest that targeting a single cell type or mediator may be inadequate to control severe disease characterized by a mixed inflammatory exudate. Future studies will consider TPL2-regulated pathways as potential predictors of severe influenza progression as well as investigate novel methods to modulate TPL2 function during viral infection.


Asunto(s)
Gripe Humana , Animales , Ratones , Humanos , Pulmón , Citocinas , Neutrófilos , Exudados y Transudados , Ratones Noqueados , Ratones Endogámicos C57BL , Quinasas Quinasa Quinasa PAM/genética
17.
Elife ; 122023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555828

RESUMEN

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Tauopatías , Animales , Humanos , Ratones , Encéfalo/patología , Células Cultivadas , Espinas Dendríticas/patología , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Noqueados , Microglía/metabolismo , Enfermedades Neuroinflamatorias/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/fisiopatología
18.
Am J Reprod Immunol ; 89(5): e13689, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762515

RESUMEN

PROBLEM: Endometriosis is a proliferative disease characterized by cytokine-induced inflammation. The objective of this study was to assess cell growth and PGE2 production induced by TNF-α in endometriotic stromal cells (ESCs) in spheroid cell culture and to identify the signaling pathway involved with a view to finding new therapeutic targets for endometriosis. METHOD OF STUDY: Tissue samples were collected from patients with and without endometriosis. ESCs were isolated from ovarian endometrioma (OE). Gene expression was evaluated by real-time PCR and DNA microarray analysis, the proliferative effect on ESCs by WST-8 assay, and PGE2 production by ELISA. Protein phosphorylation was detected using western blotting. RESULTS: COX-2, aromatase and VEGFA mRNA expression and PGE2 production were significantly elevated in spheroid cell cultures compared to monolayer cell cultures. TNF-α receptor (TNFR) 1 and TNFR2 mRNA was also significantly increased. TNF-α promoted the proliferation and PGE2 production of ESCs in spheroid cell cultures significantly more than in monolayer cell cultures. TNF-α increased the expression of several genes related to the pathophysiology of endometriosis in spheroid ESCs. DNA microarray analysis revealed that the Tpl2 gene, which codes for a MAPK upstream of MEK, was upregulated in OE and endometrium with endometriosis compared to normal endometrium. TNF-α increased the phosphorylation and expression of Tpl2 and MEK, and Tpl2 and MEK inhibitors inhibited TNF-α-induced proliferation and PGE2 production in spheroid ESCs. CONCLUSION: The Tpl2-MEK signaling pathway may play a critical role in the cell growth and PGE2 production induced by TNF-α in spheroid ESCs.


Asunto(s)
Endometriosis , Femenino , Humanos , Células Cultivadas , Dinoprostona/metabolismo , ADN/metabolismo , Endometriosis/metabolismo , Endometrio/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , ARN Mensajero/metabolismo , Células del Estroma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Microbiol Spectr ; 10(5): e0113622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35980186

RESUMEN

Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.


Asunto(s)
Virus de la Influenza A , Quinasas Quinasa Quinasa PAM , Neoplasias , Infecciones por Orthomyxoviridae , Síndrome de Dificultad Respiratoria , Animales , Humanos , Ratones , Subtipo H3N2 del Virus de la Influenza A , Lactato Deshidrogenasas , Proteínas Serina-Treonina Quinasas , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/virología , Infecciones por Orthomyxoviridae/genética , Quinasas Quinasa Quinasa PAM/genética
20.
EXCLI J ; 21: 436-453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391917

RESUMEN

IKBKE have been associated with numerous cancers. As a result, IKBKE have emerged as potential target for cancer therapy. Accumulating evidence support that IKBKE orchestrate tumor cell survival in cancers. Here we evaluated the possible link between IKBKE and ERK phosphorylation. The effects of IKBKE silencing on MAPK activation in tumor vs. normal cells were evaluated via WB and RT-PCR. Ectopically expressed IKBKE, TPL2 or MEK1 constructs were used to examine the possible interactions among them via co-IP. In vitro kinase assays were performed to understand nature of the observed interactions. In tumors, IKBKE regulates MEK/ERK constitutive activations in vitro and in vivo. IKBKE and TPL2 physically interact and this interaction leads to TPL2 phosphorylation. We describe here a novel regulatory link between IKBKE and constitutive ERK1/2 activation in tumor cells. This new circuitry may be relevant for tumor cell survival in various malignancies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda