Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
Mol Cell ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39303719

RESUMEN

Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism. Here, we show that human PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a previously unknown mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification-coupled dimerization in the regulation of chromatin-modifying complexes.

2.
Mol Cell ; 79(4): 660-676.e8, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32755593

RESUMEN

Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.


Asunto(s)
Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/citología , Hígado/fisiología , Activación Transcripcional , Animales , Sitios de Unión , Células Cultivadas , Reprogramación Celular/fisiología , Cromatina/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Regulación de la Expresión Génica , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Ratones Endogámicos C57BL , Dominios Proteicos , Sitio de Iniciación de la Transcripción
3.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696472

RESUMEN

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Marchantia , Complejo Mediador , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complejo Mediador/metabolismo , Complejo Mediador/genética , Marchantia/genética , Marchantia/metabolismo , Giberelinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739802

RESUMEN

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Asunto(s)
Proliferación Celular , Dominios Proteicos , Activación Transcripcional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimiento Celular/genética , Mutación , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
5.
Immunol Rev ; 314(1): 69-92, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285739

RESUMEN

Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.


Asunto(s)
Neutrófilos , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/farmacología , Regulación Alostérica
6.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433330

RESUMEN

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 4 del Hepatocito , Regiones Promotoras Genéticas , Activación Transcripcional , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Activación Transcripcional/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Variación Genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Línea Celular
7.
J Virol ; 98(8): e0078824, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38975769

RESUMEN

The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Receptor Notch1 , Transactivadores , Activación Viral , Latencia del Virus , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Humanos , Animales , Transactivadores/metabolismo , Transactivadores/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Células Vero , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Chlorocebus aethiops , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Viral de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADN
8.
J Cell Mol Med ; 28(16): e70014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39153211

RESUMEN

Anaplastic thyroid cancer (ATC), an aggressive malignancy with virtually 100% disease-specific mortality, has long posed a formidable challenge in oncology due to its resistance to conventional treatments and the severe side effects associated with current regimens such as doxorubicin chemotherapy. Consequently, there was urgent need to identify novel candidate compounds that could provide innovative therapeutic strategies for ATC. Ophiopogonin D' (OPD'), a triterpenoid saponin extracted, yet its roles in ATC has not been reported. Our data demonstrated that OPD' potently inhibited proliferation and metastasis of ATC cells, promoting cell cycle arrest and apoptosis. Remarkably, OPD' impeded growth and metastasis of ATC in vitro and in vivo, displaying an encouraging safety profile. Regulator of G-protein signalling 4 (RGS4) expression was significantly up-regulated in ATC compared to normal tissues, and this upregulation was suppressed by OPD' treatment. Mechanistically, we elucidated that the transcription factor JUN bound to the RGS4 promoter, driving its transactivation. However, OPD' interacted with JUN, attenuating its transcriptional activity and thereby disrupting RGS4 overexpression. In summary, our research revealed that OPD' bound with JUN, which in turn resulted in the suppression of transcriptional activation of RGS4, thereby eliciting cell cycle arrest and apoptosis in ATC cells. These findings could offer promise in the development of high-quality candidate compounds for treatment in ATC.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas RGS , Saponinas , Transducción de Señal , Espirostanos , Carcinoma Anaplásico de Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Saponinas/farmacología , Proteínas RGS/metabolismo , Proteínas RGS/genética , Proliferación Celular/efectos de los fármacos , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Espirostanos/farmacología , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratones Desnudos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Metástasis de la Neoplasia
9.
Plant J ; 113(1): 160-173, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440497

RESUMEN

The anther-enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non-coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21- or 24-nucleotide phasiRNA loci (referred to as 21- or 24-PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21- or 24-PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans-activation assays in maize protoplasts of individual TFs using bulk-protoplast RNA-sequencing showed that two of the TFs coexpressed with 21-PHAS loci could activate several 21-nucleotide phasiRNA pathway genes but not transcription of 21-PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24-PHAS loci using single-cell (protoplast) RNA-sequencing, did not detect reproducible activation of either 21-PHAS or 24-PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.


Asunto(s)
MicroARNs , Zea mays , Zea mays/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Poaceae/genética , Nucleótidos , Regulación de la Expresión Génica de las Plantas/genética , ARN de Planta/genética , MicroARNs/genética
10.
New Phytol ; 242(6): 2652-2668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649769

RESUMEN

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.


Asunto(s)
Cicer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Almacenamiento de Semillas , Factores de Transcripción , Secuencia de Bases , Cicer/genética , Cicer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Activación Transcripcional/genética
11.
Cytotherapy ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39269404

RESUMEN

Invariant natural killer T (iNKT) cells are a small fraction of T lymphocytes with strong cytotoxic and immunoregulatory properties. We previously showed that human culture-expanded iNKT cells prevent alloreactivity and lyse primary leukemia blasts. Here, iNKT cells have several advantages over T cells based on their immunoregulatory capabilities. Since chimeric antigen receptors (CARs) increase the benefit of immune effector cells, they play a crucial role in improvement of cytotoxic abilities of novel cellular therapeutics such as iNKT cells. In the present study, we investigated transactivation of NK cells and prevention of alloreactivity through iNKT cells transduced with a CD19-directed CAR. iNKT cells were isolated by magnetic cell separation from peripheral blood mononuclear cells and transduced with a CD19-CAR retrovirus. Transduction efficiency, purity and cell subsets were measured by flow cytometry. Transactivation and cytotoxicity assays have been established to investigate the ability of CD19-CAR-iNKT cells to transactivate primary NK cells. A mixed lymphocyte reaction (MLR) was performed to explore the inhibition of alloreactive CD3+ T cells by CD19-CAR-iNKT cells. CD19-CAR-iNKT cells are able to transactivate NK cells independent of cell contact: The expression of activation marker CD69 was significantly increased and also production of the proinflammatory cytokine interferon-gamma was higher in NK cells pretreated with CD19-CAR-iNKT cells. Consequently, the cytotoxic activity of such NK cells was significantly increased being able to lyse leukemia cells more effectively than without prior transactivation. Adding CD19-CAR-iNKT cells to an MLR resulted in a decreased expression of the T cell activation marker CD25 on alloreactive CD3+ T lymphocytes stimulated with HLA mismatched dendritic cells. Also, the proliferation of alloreactive CD3+ T lymphocytes was significantly reduced in this setting. We demonstrate that CD19-CAR-iNKT cells keep their immunoregulatory properties despite transduction with a CAR making them an attractive effector cell population for application after allogeneic hematopoietic cell transplantation. By transactivating NK cells, increasing their cytotoxic activity and suppressing alloreactive T cells, they might further improve outcomes through prevention of both relapse and graft-versus-host disease.

12.
RNA Biol ; 21(1): 1-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100535

RESUMEN

Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.


Asunto(s)
VIH-1 , Animales , Humanos , VIH-1/genética , Duplicado del Terminal Largo de VIH , Replicación Viral , ARN Viral/genética , ARN Viral/química
13.
Virus Genes ; 60(4): 412-422, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38727968

RESUMEN

Viral promoters can be used to drive heterologous gene expression in transgenic plants. As part of our quest to look for new promoters, we have explored, for the first time, the promoters of okra enation leaf curl virus (OELCuV), a begomovirus infecting okra (Abelmoschus esculentus). The Rep and CP promoters of OELCuV fused with the gfp reporter gene, were expressed transiently in the natural host okra and the laboratory host cotton and Nicotiana benthamiana. The expression levels of the promoters were quantified through confocal laser scanning microscopy and GFP assay in N. benthamiana and okra. The results indicated that the Rep promoter was more active than the CP promoter, whose activity was similar to that of CaMV 35S promoter. Additionally, the Rep and CP promoters showed increase of expression, probably due to transactivation, when assayed following inoculation of OELCuV and betasatellite DNAs in cotton plants. A moderate increase in promoter activity in N. benthamiana was also seen, when assayed following the inoculation of the heterologous begomovirus Sri Lankan cassava mosaic virus.


Asunto(s)
Abelmoschus , Begomovirus , Gossypium , Nicotiana , Regiones Promotoras Genéticas , Nicotiana/virología , Nicotiana/genética , Begomovirus/genética , Abelmoschus/virología , Abelmoschus/genética , Gossypium/virología , Gossypium/genética , Plantas Modificadas Genéticamente/virología , Enfermedades de las Plantas/virología , Proteínas Fluorescentes Verdes/genética , Genes Reporteros , Expresión Génica
14.
Acta Pharmacol Sin ; 45(7): 1337-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38351317

RESUMEN

Transforming growth factor-ß (TGF-ß) signaling is initiated by activation of transmembrane TGF-ß receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-ß signaling pathways leads to pathological conditions. TGF-ß signaling is regulated at different levels along the pathways and begins with the liberation of TGF-ß ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-ß isoforms, enabling precise control of TGF-ß signals. In addition, the cell surface compartments used to release active TGF-ß are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ligandos , Animales , Factor de Crecimiento Transformador beta/metabolismo
15.
Mol Cell ; 64(4): 803-814, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818144

RESUMEN

Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.


Asunto(s)
Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Transducción de Señal , Sulfonamidas/farmacología , Análisis de Supervivencia , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
16.
Genomics ; 115(5): 110694, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536396

RESUMEN

NF-YA, the regulatory subunit of the trimeric CCAAT-binding transcription factor NF-Y, is present in vertebrates in two major alternative spliced isoforms: NF-YAl and NF-YAs, differing for the presence of exon-3. NF-YAx, a third isoform without exon-3/-5, was reported only in human neuronal cells and tumors. These events affect the Trans-Activation Domain. We provide here evidence for the expression of NF-YAx and for the existence of a new isoform, NF-YAg, skipping only exon-5. These isoforms are abundant in Aves, but not in reptiles, and are the prevalent transcripts in the initial phases of embryo development in chicken. Finally, we analyzed NF-YAg and NF-YAx amino acid sequence using AlphaFold: absence of exon-5 denotes a global reduction of ß-stranded elements, while removal of the disordered exon-3 sequence has limited effects on TAD architecture. These data identify an expanded program of NF-YA isoforms within the TAD in Aves, implying a role during early development.

17.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201590

RESUMEN

Glucocorticoids (GCs) are widely used for treating hematological malignancies despite their multiple adverse effects. The biological response to GCs relies on glucocorticoid receptor (GR) transrepression (TR) that mediates the anticancer effects and transactivation (TA) associated with the side effects. Selective GR agonists (SEGRAs) preferentially activating GR TR could offer greater benefits in cancer treatment. One of the well-characterized SEGRAs, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium-chloride (CpdA), exhibited anticancer activity; however, its translational potential is limited due to chemical instability. To overcome this limitation, we obtained CpdA derivatives, CpdA-01-CpdA-08, employing two synthetic strategies and studied their anti-tumor activity: 4-(1-hydroxy-2-(piperidin-1-yl)ethyl)phenol or CpdA-03 demonstrated superior GR affinity and stability compared to CpdA. In lymphoma Granta and leukemia CEM cell lines, CpdA-03 ligand exhibited typical SEGRA properties, inducing GR TR without triggering GR TA. CpdA-03 effects on cell viability, growth, and apoptosis were similar to the reference GR ligand, dexamethasone (Dex), and the source compound CpdA. In vivo testing of CpdA-03 activity against lymphoma on the transplantable P388 murine lymphoma model showed that CpdA-03 reduced tumor volume threefold, outperforming Dex and CpdA. In conclusion, in this work, we introduce a novel SEGRA CpdA-03 as a promising agent for lymphoma treatment with fewer side effects.


Asunto(s)
Antineoplásicos , Receptores de Glucocorticoides , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenetilaminas/farmacología , Supervivencia Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Acetatos , Tiramina/análogos & derivados
18.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542351

RESUMEN

Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.


Asunto(s)
COVID-19 , VIH-1 , Humanos , VIH-1/fisiología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Activación Transcripcional , Duplicado del Terminal Largo de VIH , COVID-19/genética , Productos del Gen tat/genética , Lentivirus/genética , Expresión Génica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , ARN Viral/metabolismo
19.
J Environ Manage ; 354: 120412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402785

RESUMEN

Effluents of wastewater treatment plants can abundantly spread endocrine disrupting chemicals in the environment. To improve water quality monitoring, the use of effect-based tools that measure estrogenic activity has been suggested, however their results could be influenced by different factors. This study compared the estrogenic activity of wastewater samples extracted with two stationary phases and tested with two in vitro effect-based assays to investigate whether and how stationary phases and assays could influence biomonitoring data. During four seasonal periods, the effluents of six WWTPs located in northern Italy were sampled. After the extraction using two different stationary phases (HLB, C18), the samples (n = 72) were tested using two effect-based assays: a gene reporter luciferase assay on mammalian cells (MELN) and yeast estrogen screen assay (YES). The results showed that estrogenic activity of HLB extracts was significantly different from the activity of C18 extracts, suggesting that extraction phase can influence biomonitoring data. Moreover, the estrogenic activity was overall higher using gene reporter MELN assay than using YES assay, suggesting that, due to difference in cell membrane permeability and metabolic activation, the applied cell model can affect the biomonitoring results. Finally, from the comparison between the activity of the final effluent and the environmentally safe estrogenic levels in surface waters, MELN data suggested that the activity of this effluent may pose an environmental risk, while YES data showed that it should not be considered a threat to the receiving surface waters. This study pointed out that a standardized approach is needed to assess the estrogenic activity of waters; it reported important data to select the most suitable stationary phase for samples extraction (samples extracted with C18 sorbent showed higher estradiol equivalent concentration values) and the most appropriate bioassay (gene reporter luciferase MELN assay was more sensitive than YES assay) to assess the environmental risk, thus protecting human health.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Humanos , Estradiol/metabolismo , Estrógenos/análisis , Aguas Residuales , Saccharomyces cerevisiae/metabolismo , Luciferasas/genética , Contaminantes Químicos del Agua/análisis , Bioensayo/métodos , Monitoreo del Ambiente/métodos , Disruptores Endocrinos/análisis , Mamíferos/metabolismo
20.
Plant J ; 111(1): 250-268, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35491968

RESUMEN

Bacterial wilt, a severe disease involving vascular system blockade, is caused by Ralstonia solanacearum. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related remains unclear. Herein, we showed that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by the CaPti1-CaERF3 module. CaPti1 and CaERF3 are members of the serine/threonine protein kinase and ethylene-responsive factor families, respectively. Expression profiling revealed that CaPti1 and CaERF3 were upregulated by R. solanacearum inoculation, dehydration stress, and exogenously applied abscisic acid (ABA). They in turn phenocopied each other in promoting resistance of pepper (Capsicum annuum) to bacterial wilt not only by activating salicylic acid-dependent CaPR1, but also by activating dehydration tolerance-related CaOSM1 and CaOSR1 and inducing stomatal closure to reduce water loss in an ABA signaling-dependent manner. Our yeast two hybrid assay showed that CaERF3 interacted with CaPti1, which was confirmed using co-immunoprecipitation, bimolecular fluorescence complementation, and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that upon R. solanacearum inoculation, CaPR1, CaOSM1, and CaOSR1 were directly targeted and positively regulated by CaERF3 and potentiated by CaPti1. Additionally, our data indicated that the CaPti1-CaERF3 complex might act downstream of ABA signaling, as exogenously applied ABA did not alter regulation of stomatal aperture by the CaPti1-CaERF3 module. Importantly, the CaPti1-CaERF3 module positively affected pepper growth and the response to dehydration stress. Collectively, the results suggested that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF3 in pepper plants to enhance resistance against R. solanacearum.


Asunto(s)
Capsicum , Ralstonia solanacearum , Ácido Abscísico/metabolismo , Capsicum/genética , Capsicum/metabolismo , Deshidratación , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda