Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Cell ; 66(4): 458-472.e5, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525740

RESUMEN

Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response.


Asunto(s)
Cromatina/enzimología , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Lisina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Cromatina/patología , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Mutación , Unión Proteica , Interferencia de ARN , Factores de Tiempo , Transcripción Genética , Transfección , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas
2.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35048992

RESUMEN

During the first cell cycles of early development, the chromatin of the embryo is highly reprogrammed while the embryonic genome starts its own transcription. The spatial organization of the genome is an important process that contributes to regulating gene transcription in time and space. It has, however, been poorly studied in the context of early embryos. To study the cause-and-effect link between transcription and spatial organization in embryos, we focused on ribosomal genes, which are silent initially but start to be transcribed in 2-cell mouse embryos. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very particular manner between 2-cell and 16-cell stage. By using drugs that interfere with ribosomal DNA transcription, we showed that this organization - which is totally different in somatic cells - depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences once the 4-cell stage has been reached.


Asunto(s)
Cromatina , ARN Ribosómico , Animales , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , Embrión de Mamíferos/metabolismo , Ratones , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Transcripción Genética
3.
Pharmacol Res ; 189: 106696, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791898

RESUMEN

Gastric carcinoma is a highly malignant tumor that still lacks effective molecular targets. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an essential oncogenic driver overexpressed in various cancers. The potential role of hnRNPA2B1 in oncotherapy has not been revealed because of the absence of active chemical molecules. In this study, we identified the pseudourea derivative XI-011 as a novel hnRNPA2B1 ligand using chemical proteomics. An interaction study indicated that XI-011 could bind the nucleotide-binding domain to disrupt the recruitment of hnRNPA2B1 to the promoter and untranslated region of the murine double minute X (MDMX) gene, thereby inhibiting its transcription. In addition, chemical targeting of hnRNPA2B1 recovered inactivated p53 and enhanced the therapeutic efficacy of apatinib in vivo. This work presented a novel strategy to restore p53 activity for the treatment of gastric cancers via chemically targeting hnRNPA2B1.


Asunto(s)
Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Ligandos , Ribonucleoproteínas Nucleares Heterogéneas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
4.
Fish Shellfish Immunol ; 134: 108578, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740084

RESUMEN

Nervous necrosis virus (NNV) could infect more than 200 fish species worldwide, with almost 100% mortality in affected larvae and juvenile fish. Among different genotypes of NNV, the red-grouper nervous necrosis virus (RGNNV) genotype is the most widely reported with the highest number of susceptible species. Interferon (IFN) is a crucial antiviral cytokine and RGNNV needs to develop some efficient strategies to resist host IFN-stimulated antiviral immune. Although considerable researches on RGNNV, whether RGNNV B1 protein participates in regulating the host's IFN response remains unknown. Here, we reported that B1 protein acted as a transcript inhibition factor to suppress fish IFN production. We firstly found that ectopic expression of B1 protein significantly decreased IFN and IFN-stimulated genes (ISGs) mRNA levels and IFNφ1 promoter activity induced by polyinosinic:polycytidylic acid [poly (I:C)]. Further studies showed that B1 protein inhibited the IFNφ1 promoter activity stimulated by the key RIG-I-like receptors (RLRs) factors, including MDA5, MAVS, TBK1, IRF3, and IRF7 and decreased their protein levels. Moreover, B1 protein significantly inhibited the activity of constitutively active cytomegalovirus (CMV) promoter, which suggested that B1 protein was a transcription inhibitor. Western blot indicated that B1 protein decreased the Ser5 phosphorylation of RNA polymerase II (RNAP II) C-terminal domain (CTD). Together, our data demonstrated that RGNNV B1 protein was a host transcript antagonist, which intervened RNAP II Ser5-phosphorylation, inhibiting host IFN response and facilitating RGNNV replication.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Inmunidad Innata/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Regulación de la Expresión Génica , Proteínas de Peces/genética , Secuencia de Aminoácidos , Alineación de Secuencia , Antivirales , Poli I-C/farmacología , Replicación Viral , Necrosis , Nodaviridae/fisiología
5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372941

RESUMEN

Plants have evolved diverse strategies to accommodate saline environments. More insights into the knowledge of salt stress regulatory pathways will benefit crop breeding. RADICAL-INDUCED CELL DEATH 1 (RCD1) was previously identified as an essential player in salt stress response. However, the underlying mechanism remains elusive. Here, we unraveled that Arabidopsis NAC domain-containing protein 17 (ANAC017) acts downstream of RCD1 in salt stress response, and its ER-to-nucleus transport is triggered by high salinity. Genetic and biochemical evidence showed that RCD1 interacts with transmembrane motif-truncated ANAC017 in the nucleus and represses its transcriptional activity. Transcriptome analysis revealed that genes associated with oxidation reduction process and response to salt stress are similarly dysregulated in loss-of-function rcd1 and gain-of-function anac017-2 mutants. In addition, we found that ANAC017 plays a negative role in salt stress response by impairing the superoxide dismutase (SOD) enzyme activity. Taken together, our study uncovered that RCD1 promotes salt stress response and maintains ROS homeostasis by inhibiting ANAC017 activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estrés Fisiológico/genética , Fitomejoramiento , Tolerancia a la Sal/genética , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
6.
Chembiochem ; 23(17): e202200260, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790065

RESUMEN

Small molecule targeting of DNA and RNA sequences has come into focus as a therapeutic strategy for diseases such as myotonic dystrophy type 1 (DM1), a trinucleotide repeat disease characterized by RNA gain-of-function. Herein, we report a novel template-selected, reversible assembly of therapeutic agents in situ via aldehyde-amine condensation. Rationally designed small molecule targeting agents functionalized with either an aldehyde or an amine were synthesized and screened against the target nucleic acid sequence. The assembly of fragments was confirmed by MALDI-MS in the presence of DM1-relevant nucleic acid sequences. The resulting hit combinations of aldehyde and amine inhibited the formation of r(CUG)exp in vitro in a cooperative manner at low micromolar levels and rescued mis-splicing defects in DM1 model cells. This reversible template-selected assembly is a promising approach to achieve cell permeable and multivalent targeting via in situ synthesis and could be applied to other nucleic acid targets.


Asunto(s)
Distrofia Miotónica , Aldehídos , Aminas , Secuencia de Bases , ADN , Humanos , Ligandos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN/genética , Expansión de Repetición de Trinucleótido
7.
Bioorg Chem ; 118: 105481, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801947

RESUMEN

A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 µM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.


Asunto(s)
Antibacterianos/farmacología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Bacterias Grampositivas/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mariposas Nocturnas , Relación Estructura-Actividad
8.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142440

RESUMEN

Rice false smut caused by the biotrophic fungal pathogen Ustilaginoidea virens has become one of the most important diseases in rice. The large effector repertory in U. virens plays a crucial role in virulence. However, current knowledge of molecular mechanisms how U. virens effectors target rice immune signaling to promote infection is very limited. In this study, we identified and characterized an essential virulence effector, SCRE4 (Secreted Cysteine-Rich Effector 4), in U. virens. SCRE4 was confirmed as a secreted nuclear effector through yeast secretion, translocation assays and protein subcellular localization, as well as up-regulation during infection. The SCRE4 gene deletion attenuated the virulence of U. virens to rice. Consistently, ectopic expression of SCRE4 in rice inhibited chitin-triggered immunity and enhanced susceptibility to false smut, substantiating that SCRE4 is an essential virulence factor. Furthermore, SCRE4 transcriptionally suppressed the expression of OsARF17, an auxin response factor in rice, which positively regulates rice immune responses and resistance against U. virens. Additionally, the immunosuppressive capacity of SCRE4 depended on its nuclear localization. Therefore, we uncovered a virulence strategy in U. virens that transcriptionally suppresses the expression of the immune positive modulator OsARF17 through nucleus-localized effector SCRE4 to facilitate infection.


Asunto(s)
Hypocreales , Oryza , Quitina/metabolismo , Cisteína/metabolismo , Hypocreales/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo
9.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565980

RESUMEN

Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.


Asunto(s)
Cupressus , Aceites Volátiles , Animales , Antibacterianos/farmacología , Cupressus/química , Conservantes de Alimentos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Aceites Volátiles/química , Aceites Volátiles/farmacología , Staphylococcus aureus , Pez Cebra
10.
J Bacteriol ; 203(17): e0021021, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34152199

RESUMEN

Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Rhodobacter sphaeroides/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Rhodobacter sphaeroides/genética , Factores de Transcripción/genética , Transcripción Genética
11.
EMBO Rep ; 20(10): e48068, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31448565

RESUMEN

Nuclear RNA and the act of transcription have been implicated in nuclear organization. However, their global contribution to shaping fundamental features of higher-order chromatin organization such as topologically associated domains (TADs) and genomic compartments remains unclear. To investigate these questions, we perform genome-wide chromatin conformation capture (Hi-C) analysis in the presence and absence of RNase before and after crosslinking, or a transcriptional inhibitor. TAD boundaries are largely unaffected by RNase treatment, although a subtle disruption of compartmental interactions is observed. In contrast, transcriptional inhibition leads to weaker TAD boundary scores. Collectively, our findings demonstrate differences in the relative contribution of RNA and transcription to the formation of TAD boundaries detected by the widely used Hi-C methodology.


Asunto(s)
Cromatina/genética , ARN/genética , Transcripción Genética , Dactinomicina/farmacología , Genoma Humano , Humanos , Células K562 , Modelos Biológicos , Ribonucleasas/metabolismo , Transcripción Genética/efectos de los fármacos
12.
Future Oncol ; 17(18): 2279-2289, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33736462

RESUMEN

Lurbinectedin is a marine-derived drug that inhibits transcription, a process that is frequently dysregulated in small cell lung cancer. The activity of lurbinectedin has been studied in many solid tumors, showing not only promising results but also a favorable safety profile. In relapsed small cell lung cancer, the drug has shown encouraging activity both as a single agent and in combination with doxorubicin, paclitaxel or irinotecan. The USA FDA has recently granted accelerated approval to lurbinectedin monotherapy in this setting. This article provides an update on available data and ongoing studies of lurbinectedin in small cell lung cancer, including Phase I combination trials, the basket Phase II trial and the ATLANTIS Phase III trial.


Lay abstract Lung cancer is currently responsible for a large number of cancer deaths worldwide. Small cell lung cancer (SCLC) is considered the most aggressive subtype of lung cancer. When a patient presents with extensive SCLC, first-line treatment needs to be used. The most appropriate treatment option for the patient is selected; however, it is possible for the cancer to continue to get worse, even over a brief period of time. The patient will then be given another treatment; however, studies on the effectiveness of classical second-line drugs are scarce. For this reason, new therapies for SCLC are in development. One of these treatments is a marine-derived drug called lurbinectedin, which shows promising activity in some solid tumors, such as extensive SCLC, after failure of first-line treatment. Here the authors present the results of the main trials related to the activity of lurbinectedin either alone or in combination with other drugs for this type of cancer.


Asunto(s)
Carbolinas/uso terapéutico , Evaluación de Medicamentos/estadística & datos numéricos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Humanos , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/patología , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/patología
13.
Biochem Biophys Res Commun ; 531(1): 56-61, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32278549

RESUMEN

An expanded GGGGCC hexanucleotide (G4C2) repeat within the non-coding region of C9ORF72 gene has been identified as the most common genetic cause of FTD/ALS kindred, and synthetic ligand targeting this pathological expansion sequence holds a promising approach for the disease interference. We here describe the naphthyridine carbamate tetramer, p-NCTB, as a binding ligand to hairpin G4C2 repeat. p-NCTB simultaneously recognizes two distal CGGG/CGGG sites in G4C2 repeat DNA and RNA leading to the formation of the interhelical (inter- and intrastrand) binding complexes. The intrastrand binding was predominant when p-NCTB bound to long repeat sequence that accommodates multiple binding sites by folding into hairpins, while the interstrand binding was exclusive for short repeat sequence. The binding of p-NCTB showed repeat-length selectivity: the longer repeat sequence is a better target for p-NCTB. p-NCTB demonstrated inhibition of transcription against G4C2 repeat template in vitro in a repeat length-dependent manner.


Asunto(s)
Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/efectos de los fármacos , Naftiridinas/farmacología , Transcripción Genética/efectos de los fármacos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Humanos , Naftiridinas/química , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos/efectos de los fármacos
14.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487275

RESUMEN

Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.


Asunto(s)
Virus Chikungunya/metabolismo , Proteínas no Estructurales Virales/genética , Animales , Antivirales , Línea Celular , Fiebre Chikungunya/genética , Fiebre Chikungunya/metabolismo , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Efecto Citopatogénico Viral/genética , Virus ADN/genética , Humanos , Interferón Tipo I/genética , Ratones , Mutación , Células 3T3 NIH , ARN Viral/metabolismo , Replicón , Transducción de Señal , Virus Sindbis/genética , Virus Sindbis/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
15.
FASEB J ; 33(7): 8280-8293, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31021670

RESUMEN

The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity. In human CD4+ T cells isolated from aviremic individuals and in the humanized mouse model of latency, combining dCA with antiretroviral therapy accelerates HIV-1 suppression and delays viral rebound upon treatment interruption. This drug class is amenable to block-and-lock functional cure approaches, aimed at a durable state of latency. Simian immunodeficiency virus (SIV) infection of rhesus macaques (RhMs) is the best-characterized model for AIDS research. Here, we demonstrate, using in vitro and cell-based assays, that dCA directly binds to SIV Tat's basic domain. dCA specifically inhibits SIV Tat binding to TAR, but not a Tat-Rev fusion protein, which activates transcription when Rev binds to its cognate RNA binding site replacing the apical region of TAR. Tat-TAR inhibition results in loss of RNA polymerase II recruitment to the SIV promoter. Importantly, dCA potently inhibits SIV reactivation from latently infected Hut78 cells and from primary CD4+ T cells explanted from SIVmac239-infected RhMs. In sum, dCA's remarkable breadth of activity encourages SIV-infected RhM use for dCA preclinical evaluation.-Mediouni, S., Kessing, C. F., Jablonski, J. A., Thenin-Houssier, S., Clementz, M., Kovach, M. D., Mousseau, G., de Vera, I.M.S., Li, C., Kojetin, D. J., Evans, D. T., Valente, S. T. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Productos del Gen tat/antagonistas & inhibidores , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/fisiología , Activación Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Productos del Gen tat/metabolismo , Células HEK293 , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Isoquinolinas , Macaca mulatta , Regiones Promotoras Genéticas , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Secuencias Repetidas Terminales
16.
Mol Biol Rep ; 47(3): 1563-1572, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32095985

RESUMEN

Two new cytotoxic 1,8-naphthalimide derivatives have been synthesized and characterized. Their biological activities as cytotoxicity and antimicrobial activities and inhibitory activities against DNA-polymerase were evaluated. The interactions of compounds with double-stranded- and quadruple-DNA have been studied by UV-Vis, fluorescent intercalator displacement, competition dialysis, circular dichroism and the findings were compared with the parent naphthalimide and the other compounds. The results show that both compounds (1 and 2) and the parent compound NI have strong cytotoxic activities against Beas-2B, MCF-7, HepG2 and MDA-MB-231 cancer cell lines, antimicrobial activities against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and inhibitory activities towards Taq-polymerase and transcriptase. These novel cationic compounds 1 and 2 can stabilize G-quadruplexes DNA according to thermal denaturation experiments, they change the 3D structure of the DNA (see details in CD experiments) and they exhibit different binding affinities for q-DNA and ds-DNA revealed by spectrophotometric titrations and competitive dialysis studies.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , G-Cuádruplex , Naftalimidas/farmacología , Neoplasias/metabolismo , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , ADN/química , Escherichia coli/efectos de los fármacos , Células Hep G2 , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Estructura Molecular , Naftalimidas/síntesis química , Naftalimidas/metabolismo , Neoplasias/patología , Relación Estructura-Actividad
17.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232189

RESUMEN

Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.


Asunto(s)
Infecciones por Alphavirus/patología , Cisteína Endopeptidasas/metabolismo , Efecto Citopatogénico Viral , Biosíntesis de Proteínas , Virus Sindbis/fisiología , Transcripción Genética , Proteínas no Estructurales Virales/metabolismo , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/virología , Animales , Cisteína Endopeptidasas/genética , Genoma Viral , Ratones , Células 3T3 NIH , Proteínas no Estructurales Virales/genética , Virión , Replicación Viral
18.
Bioorg Chem ; 87: 70-77, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30878811

RESUMEN

The square-planar heteroleptic Pt(II) coordination compound [Pt(bpy)(dicnq)](NO3)2 (1) and the quaternized dicnq ligand, namely 12,13-dicyano-5,6-dihydrodipyrazino[2,3-f:1',2',3',4'-lmn][1,10]phenanthroline-4,7-diium dibromide (2) (Fig. 1) were synthesized and fully characterized by means of FTIR, NMR, MALDI-TOF MS and the purity was confirmed by CHN analyses. The DNA binding profiles of 1 and 2 were identified in an identical condition. The biological activities of these compounds were investigated by the assays of transcription and replication inhibition, cytotoxic and antimicrobial activity. The result of this study indicates that, both compounds strongly bind to DNA via intercalation but only 1 has a strong nuclease activity. The coordination compound of dicnq (1) binds to the DNA only slightly stronger than the quaternized form of dicnq (2), and is more potent as an inhibitor of transcription and replication and therefore, 1 has more potential as an anticancer agent but the compounds did not show cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer, and DLD-1 colon cancer cell lines it was found that they only had activities against HepG2 liver cancer cell line with following IC50 values; 94.75 and 159.60 µM for 1 and 2, respectively. In addition, tested bacteria are more susceptible to compound 1. These biological activities of 1 may strongly be due to its ability to digest DNA as a chemical nuclease. According to this study, the quaternization of the ligand does not make biologically more active than the coordination compound of the same ligand in this case. The compound (1) is worth further investigation for its antitumor activities.


Asunto(s)
Antineoplásicos/farmacología , ADN de Neoplasias/efectos de los fármacos , Compuestos Organoplatinos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Relación Estructura-Actividad
19.
Proc Natl Acad Sci U S A ; 113(44): 12426-12431, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791148

RESUMEN

RNA polymerase II (pol II) encounters numerous barriers during transcription elongation, including DNA strand breaks, DNA lesions, and nucleosomes. Pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA with programmable sequence specificity and high affinity. Previous studies suggest that Py-Im polyamides can prevent transcription factor binding, as well as interfere with pol II transcription elongation. However, the mechanism of pol II inhibition by Py-Im polyamides is unclear. Here we investigate the mechanism of how these minor-groove binders affect pol II transcription elongation. In the presence of site-specifically bound Py-Im polyamides, we find that the pol II elongation complex becomes arrested immediately upstream of the targeted DNA sequence, and is not rescued by transcription factor IIS, which is in contrast to pol II blockage by a nucleosome barrier. Further analysis reveals that two conserved pol II residues in the Switch 1 region contribute to pol II stalling. Our study suggests this motif in pol II can sense the structural changes of the DNA minor groove and can be considered a "minor groove sensor." Prolonged interference of transcription elongation by sequence-specific minor groove binders may present opportunities to target transcription addiction for cancer therapy.


Asunto(s)
ADN/metabolismo , Nylons/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , ADN/química , ADN/genética , Imidazoles/química , Imidazoles/metabolismo , Imidazoles/farmacología , Modelos Moleculares , Conformación de Ácido Nucleico , Nylons/química , Nylons/farmacología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transcripción Genética/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 112(31): E4178-87, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195788

RESUMEN

RNA polymerase inhibitors like the CBR class that target the enzyme's complex catalytic center are attractive leads for new antimicrobials. Catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg(2+) ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. We report crystal structures of CBR inhibitor/Escherichia coli RNA polymerase complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.


Asunto(s)
Antiinfecciosos/farmacología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Nucleótidos/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Difosfatos/metabolismo , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda