Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
Plant J ; 118(3): 731-752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38226777

RESUMEN

Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and ß-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Triterpenos Pentacíclicos , Prunella , Prunella/genética , Prunella/metabolismo , Triterpenos Pentacíclicos/metabolismo , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Triterpenos/metabolismo
2.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072959

RESUMEN

Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated ß-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed ß-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.

3.
BMC Biotechnol ; 24(1): 24, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685061

RESUMEN

BACKGROUND: Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins. In this work, a molecular adapter that consists of a cell penetrating peptide and two cleavable peptides was inserted into a targeted toxin between the ribosome-inactivating protein dianthin and the epidermal growth factor. Applying cell viability assays, this study examined whether the addition of the adapter further augments the endosomal escape enhancement of the glycosylated triterpenoid SO1861, which has shown up to more than 1000-fold enhancement in the past. RESULTS: Introducing the peptide adapter into the targeted toxin led to an about 12-fold enhancement in the cytotoxicity on target cells while SO1861 caused a 430-fold increase. However, the combination of adapter and glycosylated triterpenoid resulted in a more than 4300-fold enhancement and in addition to a 51-fold gain in specificity. CONCLUSIONS: Our results demonstrated that the cleavable peptide augments the endosomal escape mediated by glycosylated triterpenoids while maintaining specificity. Thus, the adapter is a promising addition to glycosylated triterpenoids to further increase the efficacy and therapeutic window of targeted toxins.


Asunto(s)
Endosomas , Humanos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Triterpenos/farmacología , Triterpenos/química , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología
4.
BMC Plant Biol ; 24(1): 588, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902602

RESUMEN

BACKGROUND: Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS: In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS: Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.


Asunto(s)
Glucosiltransferasas , Filogenia , Sapindus , Saponinas , Triterpenos , Saponinas/biosíntesis , Saponinas/metabolismo , Sapindus/genética , Sapindus/metabolismo , Triterpenos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443797

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilación de la Expresión Génica
6.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698337

RESUMEN

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Asunto(s)
Astragalus propinquus , Metabolómica , Fenotipo , Raíces de Plantas , Plantas Medicinales , Transcriptoma , Astragalus propinquus/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Perfilación de la Expresión Génica
7.
Planta ; 259(2): 50, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285114

RESUMEN

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Asunto(s)
Saponinas , Escualeno/análogos & derivados , Triterpenos , Glicósidos , Flavonoides , Saponinas/genética , Glicosiltransferasas , Uridina Difosfato
8.
Bioorg Chem ; 147: 107351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593530

RESUMEN

Eleven triterpenoid saponins, including five new compounds, which were named densiflorasides A - E (1 - 5), were isolated from aerial parts of Mussaenda densiflora (Rubiaceae). Their structures were elucidated based on spectroscopic and single-crystal X-ray diffraction analyses and chemical methods. All the isolated compounds and the aglycone heinsiagenin A were evaluated for their immunosuppressive and antiosteoclastogenic activities in vitro. Compounds 6 - 8 and heinsiagenin A inhibited osteoclastogenesis, with IC50 values ranging from 8.24 to 17.7 µM. Furthermore, compounds 3, 6 - 8, and heinsiagenin A significantly inhibited T-cell proliferation, with IC50 values ranging from 2.56 to 8.60 µM, and compounds 3 - 5 and 11 inhibited the proliferation of B lymphocytes, with IC50 values ranging from 1.29 to 8.49 µM. Further in vivo experiments indicated that heinsiagenin A could significantly attenuate IMQ-induced psoriasis and DSS-induced colitis in mice.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Inmunosupresores , Saponinas , Triterpenos , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Inmunosupresores/farmacología , Inmunosupresores/química , Inmunosupresores/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Estructura Molecular , Linfocitos T/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Masculino , Osteoclastos/efectos de los fármacos
9.
Bioorg Chem ; 145: 107230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387397

RESUMEN

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Asunto(s)
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Triterpenos , Humanos , Estructura Molecular , Astragalus propinquus/química , Simulación del Acoplamiento Molecular , Saponinas/química , Ácido Oleanólico/química , Componentes Aéreos de las Plantas/química , Triterpenos/farmacología , Triterpenos/química
10.
Bioorg Chem ; 151: 107692, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39102757

RESUMEN

As one of a traditional Chinese medicine with dual applications in both medicinal treatment and dietary consumption, the mature seeds of D. lablab were reported to be rich in saponins and have a good effect on inflammatory related diseases. However, the substance basis for its anti-inflammatory activity remains unclear. Thus, a comprehensive phytochemical investigation on triterpenoid saponins from D. lablab seeds was carried out, resulting in the isolation and identification of twenty-one new triterpenoid saponins including dolilabsaponins A1-A4, B, C, D1-D3, E-M, N1, N2 and O (1-21) along with thirteen known analogs (22-34). Notably, the known saponins, 31, 32, and 34 were obtained from Leguminosae family for the first time. The 1H and 13C NMR data of saponins 24 and 28 were firstly reported here. Additionally, lipopolysaccharide (LPS)-stimulated RAW264.7 cells model was utilized to assess inhibitory activities of compounds 1-34 on nitric oxide (NO) production. The results revealed that compounds 1-3, 9, 10, 13-15, 18, 22, 23 and 28-34 significantly suppressed the elevation of NO levels in LPS-induced RAW264.7 cells at the concentration of 30 µM, exhibiting a concentration-dependent manner at 3, 10, and 30 µM. The results suggested that compounds 1-3, 9, 10, 13-15, 18, 22, 23, and 28-34 possessed potential anti-inflammatory activity. Further western blot assay demonstrated that 1, 9, 10, 13, 14, and 18 suppressed inflammatory response via down-regulated the expression levels of inflammatory factors, tumor necrosis factor-alpha and interleukin-6.

11.
Biomed Chromatogr ; 38(5): e5835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304995

RESUMEN

The saponin-enriched extract from Celosiae Semen is a promising resource owing to its lipid-lowering activity. However, triterpenoid saponins are difficult to extract owing to their high molecular weight and strong water solubility. The aim of this paper was to explore an eco-friendly and effective technology of extraction and enrichment of total triterpenoid saponins to obtain high lipid-lowering fractions. Initially, Box-Behnken design experiments were employed to optimize the heat reflux extraction process on the basic of mono-factor experiments. Afterwards, the crude extract was further purified using D-101 resin, and the purification parameters were investigated based on adsorption/desorption experiments and biological activity assay. Under optimal conditions, the purity of the finally obtained total triterpenoid saponins was increased by 7.28-fold. The lipid-lowering activities of the six main triterpenoid saponins were evaluated in HepG2 cells induced by palmitic acid. The results of Oil Red O staining showed that the compounds all exhibited potential lipid-lowering activity. The structure-activity relationship analysis suggested that the oligosaccharide chain at C-28 played an essential role in their lipid-lowering activity and the substituent group at C-23 site also showed important effects. The optimal extraction and purification methods may facilitate the utilization of Celosiae Semen for the industrial production as a functional food and drug.


Asunto(s)
Amaranthaceae , Metabolismo de los Lípidos , Saponinas/química , Saponinas/farmacología , Triterpenos/química , Amaranthaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Humanos , Células Hep G2 , Etanol/química
12.
Chem Biodivers ; : e202401585, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078810

RESUMEN

Mastic is a natural resin produced by Pistacia lentiscus L. (Anacardiaceae) with high medicinal value and have been traditionally used as Uighur imported medicine for centuries. In this study, 16 triterpenoids including seven new norleanane triterpenoids (1-7), along with nine known oleanane triterpenoids (8-16), were isolated from the mastic. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, UV, ESI-HR-MS and NMR spectroscopy) and single-crystal X-ray diffraction. Compounds 4-7, 11, 14 and 16 showed strong inhibitory NO production in LPS-induced RAW264.7 cells with IC50 values 7.44-9.76 µM, respectively (positive control dexamethasone, 9.93 ± 1.17 µM). Furthermore, compounds 3 and 12 significantly inhibited the growth of SW480 cells, compound 3 showed the most pronounced inhibitory effect with an  IC50 of 2.30 ± 0.38 µM.

13.
Phytochem Anal ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764207

RESUMEN

INTRODUCTION: Codonopsis Radix is a beneficial traditional Chinese medicine, and triterpenoid are the major bioactive constituents. Codonopsis pilosula var. modesta (Nannf.) L.T.Shen (CPM) is a precious variety of Codonopsis Radix, which is distributed at high mountain areas. The environment plays an important role in the synthesis and metabolism of active ingredients in medicinal plants, but there is no report elaborating on the effect of altitude on terpenoid metabolites accumulation in CPM. OBJECTIVES: This study aims to analyse the effects of altitude on triterpenoid biosynthetic pathways and secondary metabolite accumulation in CPM. MATERIAL AND METHODS: The untargeted metabolomics based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 10 triterpenoids based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method were analysed at the low-altitude (1480 m) and high-altitude (2300 m) CPM fresh roots. The transcriptome based on high-throughput sequencing technology were combined to analyse the different altitude CPM triterpenoid biosynthetic pathways. RESULTS: A total of 17,351 differentially expressed genes (DEGs) and 55 differentially accumulated metabolites (DAMs) were detected from the different altitude CPM, and there are significant differences in the content of the 10 triterpenoids. The results of transcriptome study showed that CPM could significantly up-regulate the gene expression levels of seven key enzymes in the triterpenoid biosynthetic pathway. CONCLUSIONS: The CPM at high altitude is more likely to accumulate triterpenes than those at low altitude, which was related to the up-regulation of the gene expression levels of seven key enzymes. These results expand our understanding of how altitude affects plant metabolite biosynthesis.

14.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38973288

RESUMEN

Two new cucurbitane-type triterpenoid saponins, 2,20ß,22ß-trihydroxy-16α,23(R)-epoxycucurbita-1,5,24-triene-3,11-dione 2-O-ß-D-glucopyranoside (1), 2,20ß,22α-trihydroxy-16α,23(S)-epoxycucurbita-1,5,11,24-tetraene-3-one 2-O-ß-D-glucopyranoside (2) were isolated from the fruit of Citrullus colocynthis (L.) Schrad. Their structures were elucidated by mass spectrometry, IR, 1D, and 2D NMR spectroscopy, etc. Besides, both of the compounds showed significant hepatoprotective activities at 10 µM against paracetamol-induced HepG2 cell damage.

15.
J Asian Nat Prod Res ; 26(7): 858-864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572987

RESUMEN

A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.


Asunto(s)
Bupleurum , Saponinas , Triterpenos , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Bupleurum/química , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Estructura Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Cirrosis Hepática/tratamiento farmacológico , Lipopolisacáridos/farmacología , Animales , Resonancia Magnética Nuclear Biomolecular
16.
J Asian Nat Prod Res ; : 1-10, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066681

RESUMEN

Five undescribed compounds, including a triterpenoid (1), three phenylpropanoids [(±)-2 and 4], and an aromatic compound (3), as well as six known analogues (5-10), were isolated from the resins of Liquidambar orientalis Mill. Their structures, including absolute configurations, were determined by using spectroscopic and computational methods, and the five new compounds displayed anti-inflammatory activities in LPS-induced RAW264.7 cells.

17.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339223

RESUMEN

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Asunto(s)
Aralia , Plantas Medicinales , Saponinas , Triterpenos , Aralia/genética , Aralia/química , Saponinas/química , Triterpenos/química , Plantas Medicinales/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Hojas de la Planta/metabolismo
18.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063059

RESUMEN

Plants of the Meliaceae family have long attracted researchers' interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3ß,24,25-trihydroxycycloartane, humilinolides A-E and methyl-2-hydroxy-3ß-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11ß,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11ß-hydroxy-14ß,15ß-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle.


Asunto(s)
Insecticidas , Meliaceae , Triterpenos , Meliaceae/química , Triterpenos/farmacología , Triterpenos/química , Insecticidas/farmacología , Insecticidas/química , Animales , Limoninas/farmacología , Limoninas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
19.
Molecules ; 29(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124853

RESUMEN

Four previously unreported triterpenoid saponins named 3ß-hydroxy-23-oxours-12-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside G) (1), 23-O-acetyl-3ß-hydroxyurs-12-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside H) (2), ursolic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl] ester (mannioside I) (3), and 3ß-hydroxy-23-oxolup-20(29)-en-28-oic acid 28-O-ß-D-glucopyranosyl ester (mannioside J) (4) were isolated as minor constituents from the EtOAc soluble fraction of the MeOH extract of the leaves of Schefflera mannii along with the known compounds 23-hydroxyursolic acid 28-O-ß-D-glucopyranosyl ester (5), ursolic acid 28-O-ß-D-glucopyranosyl ester (6), pulsatimmoside B (7) betulinic acid 28-O-[α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl] ester (8), 23-hydroxy-3-oxo-urs-12-en-28-oic acid (9), hederagenin (10), ursolic acid (11), betulinic acid (12), and lupeol (13). Their structures were elucidated by a combination of 1D and 2D NMR analysis and mass spectrometry. The MeOH extract, the EtOAc and n-BuOH fractions, and some of the isolated compounds were evaluated for their antibacterial activity against four bacteria: Staphylococcus aureus ATCC1026, Staphylococcus epidermidis ATCC 35984, Escherichia coli ATCC10536, and Klepsiella pnemoniae ATCC13882. They were also screened for their antioxidant properties, but no significant results were obtained.


Asunto(s)
Antibacterianos , Saponinas , Triterpenos , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Saponinas/química , Saponinas/farmacología , Saponinas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Estructura Molecular , Hojas de la Planta/química , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Araliaceae/química
20.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999106

RESUMEN

The results of this study showed that the compounds synthesized by the authors have significant potential due to their antibacterial and cytotoxic properties. The apparent antibacterial activity demonstrated by the compounds suggests that they are active antimicrobial agents against common microbial pathogens that cause various socially significant infectious diseases. Compound 6 showed pronounced antimicrobial activity against the Gram-positive test strain Staphylococcus aureus ATCC 6538, and compound 7 demonstrated pronounced antimicrobial activity against the Gram-negative test strain Escherichia coli ATCC 25922 (MIC = 6.3 µg/mL). This allowed us to consider these compounds to have great potential.


Asunto(s)
Antibacterianos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Triazoles , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda