Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Cell ; 184(14): 3612-3625.e17, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115980

RESUMEN

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.


Asunto(s)
Arginina/análogos & derivados , Condensados Biomoleculares/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Animales , Arginina/metabolismo , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligandos , Metilación , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
2.
Mol Cell ; 81(12): 2583-2595.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33961797

RESUMEN

53BP1 influences genome stability via two independent mechanisms: (1) regulating DNA double-strand break (DSB) repair and (2) enhancing p53 activity. We discovered a protein, Tudor-interacting repair regulator (TIRR), that associates with the 53BP1 Tudor domain and prevents its recruitment to DSBs. Here, we elucidate how TIRR affects 53BP1 function beyond its recruitment to DSBs and biochemically links the two distinct roles of 53BP1. Loss of TIRR causes an aberrant increase in the gene transactivation function of p53, affecting several p53-mediated cell-fate programs. TIRR inhibits the complex formation between the Tudor domain of 53BP1 and a dimethylated form of p53 (K382me2) that is poised for transcriptional activation of its target genes. TIRR mRNA expression levels negatively correlate with the expression of key p53 target genes in breast and prostate cancers. Further, TIRR loss is selectively not tolerated in p53-proficient tumors. Therefore, we establish that TIRR is an important inhibitor of the 53BP1-p53 complex.


Asunto(s)
Linaje de la Célula/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Linaje de la Célula/fisiología , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Humanos , Unión Proteica , Proteínas de Unión al ARN/fisiología , Dominio Tudor , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/fisiología
3.
Trends Biochem Sci ; 48(8): 689-698, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156649

RESUMEN

Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein-protein, protein-RNA, and RNA-RNA interactions. Here, we focus on Tudor domain-containing proteins - such as survival motor neuron protein (SMN) - that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN's Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor-DMA interactions in cells.


Asunto(s)
Proteínas de Unión al ARN , ARN , Ligandos , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
4.
EMBO J ; 40(17): e105043, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34287990

RESUMEN

Tudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein-protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat-induced activation of the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP-activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Respuesta al Choque Térmico , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(29): e2122026119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858337

RESUMEN

Hosts are continually selected to evolve new defenses against an ever-changing array of pathogens. To understand this process, we examined the genetic basis of resistance to the Drosophila A virus in Drosophila melanogaster. In a natural population, we identified a polymorphic transposable element (TE) insertion that was associated with an ∼19,000-fold reduction in viral titers, allowing flies to largely escape the harmful effects of infection by this virulent pathogen. The insertion occurs in the protein-coding sequence of the gene Veneno, which encodes a Tudor domain protein. By mutating Veneno with CRISPR-Cas9 in flies and expressing it in cultured cells, we show that the ancestral allele of the gene has no effect on viral replication. Instead, the TE insertion is a gain-of-function mutation that creates a gene encoding a novel resistance factor. Viral titers remained reduced when we deleted the TE sequence from the transcript, indicating that resistance results from the TE truncating the Veneno protein. This is a novel mechanism of virus resistance and a new way by which TEs can contribute to adaptation.


Asunto(s)
Elementos Transponibles de ADN , Dicistroviridae , Drosophila melanogaster , Interacciones Huésped-Patógeno , Dominio Tudor , Animales , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/virología , Mutación con Ganancia de Función , Interacciones Huésped-Patógeno/genética , Eliminación de Secuencia
6.
Genes Dev ; 31(19): 2003-2014, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089422

RESUMEN

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Histonas/metabolismo , Dominio Tudor , Acetilación , Animales , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Técnicas de Inactivación de Genes , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Ratones , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 299(9): 105124, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536629

RESUMEN

Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that posttranslationally modifies proteins that regulate multiple levels of RNA production and processing. Its substrates include histones, transcription factors, coregulators of transcription, and splicing factors. CARM1 is overexpressed in many different cancer types, and often promotes transcription factor programs that are co-opted as drivers of the transformed cell state, a process known as transcription factor addiction. Targeting these oncogenic transcription factor pathways is difficult but could be addressed by removing the activity of the key coactivators on which they rely. CARM1 is ubiquitously expressed, and its KO is less detrimental in embryonic development than deletion of the arginine methyltransferases protein arginine methyltransferase 1 and protein arginine methyltransferase 5, suggesting that therapeutic targeting of CARM1 may be well tolerated. Here, we will summarize the normal in vivo functions of CARM1 that have been gleaned from mouse studies, expand on the transcriptional pathways that are regulated by CARM1, and finally highlight recent studies that have identified oncogenic properties of CARM1 in different biological settings. This review is meant to kindle an interest in the development of human drug therapies targeting CARM1, as there are currently no CARM1 inhibitors available for use in clinical trials.


Asunto(s)
Neoplasias , Proteína-Arginina N-Metiltransferasas , Animales , Humanos , Ratones , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factores de Transcripción/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
8.
J Biomed Sci ; 31(1): 88, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237902

RESUMEN

BACKGROUND: Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS: The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS: In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS: Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4 , Fosfohidrolasa PTEN , Ubiquitinación , Remodelación Vascular , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Animales , Ratones , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Músculo Liso Vascular/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Ratones Endogámicos C57BL
9.
Cell Commun Signal ; 22(1): 345, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943195

RESUMEN

BACKGROUND: The neonatal mammalian heart exhibits considerable regenerative potential following injury through cardiomyocyte proliferation, whereas mature cardiomyocytes withdraw from the cell cycle and lose regenerative capacities. Therefore, investigating the mechanisms underlying neonatal cardiomyocyte proliferation and regeneration is crucial for unlocking the regenerative potential of adult mammalian heart to repair damage and restore contractile function following myocardial injury. METHODS: The Tudor staphylococcal nuclease (Tudor-SN) transgenic (TG) or cardiomyocyte-specific knockout mice (Myh6-Tudor-SN -/-) were generated to investigate the role of Tudor-SN in cardiomyocyte proliferation and heart regeneration following apical resection (AR) surgery. Primary cardiomyocytes isolated from neonatal mice were used to assess the influence of Tudor-SN on cardiomyocyte proliferation in vitro. Affinity purification and mass spectrometry were employed to elucidate the underlying mechanism. H9c2 cells and mouse myocardia with either overexpression or knockout of Tudor-SN were utilized to assess its impact on the phosphorylation of Yes-associated protein (YAP), both in vitro and in vivo. RESULTS: We previously identified Tudor-SN as a cell cycle regulator that is highly expressed in neonatal mice myocardia but downregulated in adults. Our present study demonstrates that sustained expression of Tudor-SN promotes and prolongs the proliferation of neonatal cardiomyocytes, improves cardiac function, and enhances the ability to repair the left ventricular apex resection in neonatal mice. Consistently, cardiomyocyte-specific knockout of Tudor-SN impairs cardiac function and retards recovery after injury. Tudor-SN associates with YAP, which plays important roles in heart development and regeneration, inhibiting phosphorylation at Ser 127 and Ser 397 residues by preventing the association between Large Tumor Suppressor 1 (LATS1) and YAP, correspondingly maintaining stability and promoting nuclear translocation of YAP to enhance the proliferation-related genes transcription. CONCLUSION: Tudor-SN regulates the phosphorylation of YAP, consequently enhancing and prolonging neonatal cardiomyocyte proliferation under physiological conditions and promoting neonatal heart regeneration after injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Animales Recién Nacidos , Proliferación Celular , Miocitos Cardíacos , Regeneración , Proteínas Señalizadoras YAP , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/citología , Fosforilación , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Corazón/fisiología , Ratones Noqueados , Ratas
10.
Biochem J ; 480(22): 1805-1816, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37905668

RESUMEN

Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.


Asunto(s)
Carcinoma Hepatocelular , Endonucleasas , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Endonucleasas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción , Predisposición Genética a la Enfermedad
11.
Int J Mol Sci ; 25(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39337424

RESUMEN

Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.


Asunto(s)
Arginina , Desarrollo de la Planta , Plantas , Procesamiento Proteico-Postraduccional , Metilación , Desarrollo de la Planta/genética , Plantas/metabolismo , Plantas/genética , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animales , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38433625

RESUMEN

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Ciclohexilaminas , Eliptocitosis Hereditaria , Ferroptosis , Osteosarcoma , Fenilendiaminas , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Endonucleasas , Ratones Desnudos , Nucleasa Microcócica , Dominio Tudor
13.
Semin Cancer Biol ; 83: 88-99, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33753223

RESUMEN

Methylation is a major post-translational modification (PTM) generated by methyltransferase on target proteins; it is recognized by the epigenetic reader to expand the functional diversity of proteins. Methylation can occur on specific lysine or arginine residues localized within regulatory domains in both histone and nonhistone proteins, thereby allowing distinguished properties of the targeted protein. Methylated residues are recognized by chromodomain, malignant brain tumor (MBT), Tudor, plant homeodomain (PHD), PWWP, WD-40, ADD, and ankyrin repeats by an induced-fit mechanism. Methylation-dependent activities regulate distinct aspects of target protein function and are largely reliant on methyl readers of histone and nonhistone proteins in various diseases. Methylation of nonhistone proteins that are recognized by methyl readers facilitates the degradation of unwanted proteins, as well as the stabilization of necessary proteins. Unlike nonhistone substrates, which are mainly monomethylated by methyltransferase, histones are di- or trimethylated by the same methyltransferases and then connected to other critical regulators by methyl readers. These fine-tuned controls by methyl readers are significant for the progression or inhibition of diseases, including cancers. Here, current knowledge and our perspectives about regulating protein function by methyl readers are summarized. We also propose that expanded research on the strong crosstalk mechanisms between methylation and other PTMs via methyl readers would augment therapeutic research in cancer.


Asunto(s)
Histonas , Neoplasias , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Neoplasias/genética
14.
Biochem Soc Trans ; 51(2): 725-734, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37013969

RESUMEN

Arginine methylation is a ubiquitous and relatively stable post-translational modification (PTM) that occurs in three types: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Methylarginine marks are catalyzed by members of the protein arginine methyltransferases (PRMTs) family of enzymes. Substrates for arginine methylation are found in most cellular compartments, with RNA-binding proteins forming the majority of PRMT targets. Arginine methylation often occurs in intrinsically disordered regions of proteins, which impacts biological processes like protein-protein interactions and phase separation, to modulate gene transcription, mRNA splicing and signal transduction. With regards to protein-protein interactions, the major 'readers' of methylarginine marks are Tudor domain-containing proteins, although additional domain types and unique protein folds have also recently been identified as methylarginine readers. Here, we will assess the current 'state-of-the-art' in the arginine methylation reader field. We will focus on the biological functions of the Tudor domain-containing methylarginine readers and address other domains and complexes that sense methylarginine marks.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN , Arginina/química , Arginina/genética , Arginina/metabolismo , Metilación , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo
15.
J Proteome Res ; 21(11): 2586-2595, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195974

RESUMEN

The transcription factors p63 and p73 have high similarity to the tumor suppressor protein p53. While the importance of p53 in DNA damage control is established, the functions of p63 or p73 remain elusive. Here, we analyzed nvp63, the cnidarian homologue of p63, that is expressed in the mesenteries of the starlet sea anemone Nematostella vectensis and that is activated in response to DNA damage. We used ultraviolet light (UV) to induce DNA damage and determined the chromatin-bound proteome with quantitative, bottom-up proteomics. We found that genotoxic stress or nvp63 knockdown recruited the protein nvPIWIL1, a homologue of the piRNA-binding PIWI protein family. Knockdown nvPIWIL1 increased protein expression from open reading frames (ORFs) that overlap with class I and II transposable element DNA sequences in the genome of N. vectensis. UV irradiation induced apoptosis, and apoptosis was reduced in the absence of nvp63 but increased with the loss of nvPIWIL1. Loss of nvp63 increased the presence of class I LTR and non-LTR retrotransposon but not of class II DNA transposon-associated protein products. These results suggest that an evolutionary early function of nvp63 might be to control genome stability in response to activation of transposable elements, which induce DNA damage during reintegration in the genome.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Retroelementos/genética , Filogenia , Evolución Biológica , Proteína p53 Supresora de Tumor/genética
16.
J Biol Chem ; 296: 100506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675746

RESUMEN

Human ARID4A and ARID4B are homologous proteins that are important in controlling gene expression and epigenetic regulation but have distinct functions. Previous studies have shown that the N-terminal domain of ARID4A is an unusual interdigitated double Tudor domain with DNA-binding activity. However, how the Tudor domain of ARID4B differs from that of ARID4A remains unknown. Here, we found that the ARID4B Tudor domain has significantly weaker DNA affinity than the ARID4A Tudor domain despite sharing more than 80% sequence identity. Structure determination and DNA titration analysis indicated that the ARID4B Tudor domain is also an interdigitated double Tudor domain with a DNA-binding surface similar to ARID4A. We identified a residue close to the DNA-binding site of the Tudor domain that differs between ARID4A and ARID4B. The Leu50 in ARID4A is Glu50 in ARID4B, and the latter forms salt bridges with two lysine residues at the DNA-binding surface. This causes a decrease in the strength of positive charge, thus reducing DNA-binding affinity while significantly increasing protein stability. We also found that a C-terminal extension region enhances the DNA-binding affinity of the ARID4B Tudor domain. This C-terminal extension is disordered and contains a positively charged RGR motif, providing an additional DNA-binding site. Finally, sequence and phylogenetic analyses indicated that the residue differences and the presence of the RGR extension region are conserved. These results provide new insight into the functional differences between ARID4A and ARID4B proteins, as well as elucidating the function of the disordered regions in these proteins.


Asunto(s)
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , ADN/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Dominio Tudor , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Proteína 1 de Unión a Retinoblastoma/química , Proteína 1 de Unión a Retinoblastoma/metabolismo , Homología de Secuencia
17.
Biochem J ; 478(10): 1943-1958, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33969871

RESUMEN

The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.


Asunto(s)
Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Histonas/química , Histonas/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteoma/análisis , Proteoma/metabolismo
18.
Anim Biotechnol ; 33(6): 1161-1169, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33849380

RESUMEN

Tudor staphylococcal nuclease (Tudor-SN) participates in milk synthesis and cell proliferation in response to prolactin (PRL) and plays a regulatory role on mTOR phosphorylation. However, the complicated molecular mechanism of Tudor-SN regulating milk protein synthesis and cell proliferation still remains to be illustrated. In present study, we observed that the proteins level of phosphorylated Tudor-SN and phosphorylated STAT5 were simultaneously enhanced upon PRL treatment in bovine mammary epithelial cells (BMECs). Tudor-SN overexpression and knockdown experiment showed that Tudor-SN positively regulated the synthesis of milk protein, cell proliferation and the phosphorylation of STAT5, which was dependent on Tudor-SN phosphorylation. STAT5 knockdown experiment showed that Tudor-SN stimulated mTOR pathway through regulating STAT5 activation, which was required for PRL to activate the mTOR pathway. Thus, these results demonstrate the primary mechanism of Tudor-SN coordinating with STAT5 to regulate milk protein synthesis and cell proliferation under stimulation of PRL in BMECs, which may provide some new perspectives for increasing milk production.


Asunto(s)
Proteínas de la Leche , Factor de Transcripción STAT5 , Bovinos , Animales , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Prolactina/farmacología , Prolactina/metabolismo , Nucleasa Microcócica/metabolismo , Glándulas Mamarias Animales/metabolismo , Transducción de Señal/fisiología , Células Epiteliales/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular
19.
J Biol Chem ; 295(49): 16877-16887, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32994220

RESUMEN

Histone recognition by "reader" modules serves as a fundamental mechanism in epigenetic regulation. Previous studies have shown that Spindlin1 is a reader of histone H3K4me3 as well as "K4me3-R8me2a" and promotes transcription of rDNA or Wnt/TCF4 target genes. Here we show that Spindlin1 also acts as a potent reader of histone H3 "K4me3-K9me3/2" bivalent methylation pattern. Calorimetric titration revealed a binding affinity of 16 nm between Spindlin1 and H3 "K4me3-K9me3" peptide, which is one to three orders of magnitude stronger than most other histone readout events at peptide level. Structural studies revealed concurrent recognition of H3K4me3 and H3K9me3/2 by aromatic pockets 2 and 1 of Spindlin1, respectively. Epigenomic profiling studies showed that Spindlin1 colocalizes with both H3K4me3 and H3K9me3 peaks in a subset of genes enriched in biological processes of transcription and its regulation. Moreover, the distribution of Spindlin1 peaks is primarily associated with H3K4me3 but not H3K9me3, which suggests that Spindlin1 is a downstream effector of H3K4me3 generated in heterochromatic regions. Collectively, our work calls attention to an intriguing function of Spindlin1 as a potent H3 "K4me3-K9me3/2" bivalent mark reader, thereby balancing gene expression and silencing in H3K9me3/2-enriched regions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Calorimetría , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Bases de Datos de Proteínas , Epigenómica , Expresión Génica , Histonas/química , Histonas/genética , Humanos , Enlace de Hidrógeno , Metilación , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Estructura Cuaternaria de Proteína
20.
EMBO J ; 36(18): 2710-2725, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724529

RESUMEN

SAGA and ATAC are two distinct chromatin modifying co-activator complexes with distinct enzymatic activities involved in RNA polymerase II (Pol II) transcription regulation. To investigate the mobility of co-activator complexes and general transcription factors in live-cell nuclei, we performed imaging experiments based on photobleaching. SAGA and ATAC, but also two general transcription factors (TFIID and TFIIB), were highly dynamic, exhibiting mainly transient associations with chromatin, contrary to Pol II, which formed more stable chromatin interactions. Fluorescence correlation spectroscopy analyses revealed that the mobile pool of the two co-activators, as well as that of TFIID and TFIIB, can be subdivided into "fast" (free) and "slow" (chromatin-interacting) populations. Inhibiting transcription elongation decreased H3K4 trimethylation and reduced the "slow" population of SAGA, ATAC, TFIIB and TFIID In addition, inhibiting histone H3K4 trimethylation also reduced the "slow" populations of SAGA and ATAC Thus, our results demonstrate that in the nuclei of live cells the equilibrium between fast and slow population of SAGA or ATAC complexes is regulated by active transcription via changes in the abundance of H3K4me3 on chromatin.


Asunto(s)
Núcleo Celular/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , Línea Celular , Cromatina/metabolismo , Humanos , Imagen Óptica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda