Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542833

RESUMEN

A group of functionalized fluorene derivatives that are structurally similar to the cellular prion protein ligand N,N'-(methylenedi-4,1-phenylene)bis [2-(1-pyrrolidinyl)acetamide] (GN8) have been synthesized. These compounds show remarkable native fluorescence due to the fluorene ring. The substituents introduced at positions 2 and 7 of the fluorene moiety are sufficiently flexible to accommodate the beta-conformational folding that develops in amyloidogenic proteins. Changes in the native fluorescence of these fluorene derivatives provide evidence of transformations in the amyloidogenic aggregation processes of insulin. The increase observed in the fluorescence intensity of the sensors in the presence of native insulin or amyloid aggregates suggest their potential use as fluorescence probes for detecting abnormal conformations; therefore, the compounds can be proposed for use as "turn-on" fluorescence sensors. Protein-sensor dissociation constants are in the 5-10 µM range and an intermolecular charge transfer process between the protein and the sensors can be successfully exploited for the sensitive detection of abnormal insulin conformations. The values obtained for the Stern-Volmer quenching constant for compound 4 as a consequence of the sensor-protein interaction are comparable to those obtained for the reference compound GN8. Fluorene derivatives showed good performance in scavenging reactive oxygen species (ROS), and they show antioxidant capacity according to the FRAP and DPPH assays.


Asunto(s)
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogénicas , Fluorometría , Fluorenos/química
2.
Small ; 19(16): e2206272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683231

RESUMEN

The redox homeostasis in tumors enhances their antioxidant defense ability, limiting reactive oxygen species mediated tumor therapy efficacy. The development of strategies for specific and continuous disruption of the redox homeostasis in tumor cells facilitates the improvement of the cancer therapeutic effect by promoting the apoptosis of tumor cells. Herein, a responsively biodegradable targeting multifunctional integrated nanosphere (HDMn-QDs/PEG-FA) is designed to enhance the anti-tumor efficacy by triggering intratumoral cascade reactions to effectively disrupt intracellular redox homeostasis. Once HDMn-QDs/PEG-FA enters tumor cells, manganese dioxide (MnO2 ) shell on the surface of nanosphere consumes glutathione (GSH) to produce Mn2+ , enabling enhanced chemodynamic therapy (CDT) via a Fenton-like reaction and T1 -weighted magnetic resonance imaging. Meanwhile, the degradation of MnO2 can also cause the fluorescence recovery of quantum dots conjugated on the surface of the shell, realizing "turn-on" fluorescence imaging. In addition, the doxorubicin is released because of the cleavage of the embedded SS bond in the hybrid core framework by GSH. A superior synergistic therapeutic efficiency combined CDT and chemotherapy is shown by HDMn-QDs/PEG-FA in vivo. The tumor-inhibition rate reaches to 94.8% and does not cause normal tissue damage due to the good targeting and tumor microenvironment-specific response.


Asunto(s)
Nanopartículas , Nanosferas , Neoplasias , Humanos , Línea Celular Tumoral , Glutatión/química , Peróxido de Hidrógeno/metabolismo , Compuestos de Manganeso/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Óxidos/química , Microambiente Tumoral
3.
Mol Pharm ; 20(2): 1426-1434, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688530

RESUMEN

Carbon quantum dots (CDs) have attracted more and more attention in the field of biological imaging, while their applications are restricted due to their nonspecific fluorescence and small particle size. Herein, two pH-responsive carbon quantum dot-doxorubicin (DOX) conjugates were designed with maleic acid (MA, cis-butenedioic acid) and fumaric acid (FA, trans-butenedioic acid) as linker, respectively, which could self-assemble into unique hybrid micelles as tumor-specific carrier-free nanotheranostics. Owing to the acid-labile covalent modification with conjugated groups and the interaction with the surrounding DOX molecules, the fluorescence of CDs was completely quenched, while it could be recovered in the tumor intracellular microenvironment by acid-triggered cleavage of the fluorophore-drug conjugates, showing excellent turn-on fluorescence for effective cellular imaging. Especially, the trans conjugate with FA as linker possessed higher drug content, better drug release behavior and stronger inhibition of tumor cells than the cis one with MA as linker, demonstrating its promising potential as carrier-free nanotheranostics for future tumor treatment.


Asunto(s)
Micelas , Puntos Cuánticos , Puntos Cuánticos/química , Nanomedicina Teranóstica , Carbono/química , Fluorescencia , Doxorrubicina/farmacología , Doxorrubicina/química , Concentración de Iones de Hidrógeno
4.
J Fluoresc ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594587

RESUMEN

A simple, efficient, and reversible fluorescent sensor probe, PBA (2,6-dimethyl pyrone barbituric acid conjugate), comprised of a pro-aromatic donor conjugated with a barbituric acid, was developed for the detection of highly toxic mercuric ions. The probe showed high selectivity and "Turn-On" fluorescence response towards Hg2+ among various metal cations such as Na+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, and Pb2+, in both homogeneous and microheterogeneous micelle medium sodium dodecyl sulphate (SDS). The binding stoichiometry, limit of detection (LOD), and binding constant for the PBA-Hg complex were determined. The mechanism of binding was ascertained using the N,N'-dimethylbarbituric acid conjugate of 2,6-dimethylpyran (PDMBA), where no binding interaction by deprotonation is possible. In the presence of cysteamine hydrochloride and trifluoroacetic acid (TFA), the complexation of Hg2+ with PBA was demonstrated to be reversible, indicating its potential for the development of reusable sensors. Moreover, the practical applicability of PBA in monitoring Hg2+ in living cells was also evaluated.

5.
J Fluoresc ; 33(2): 527-538, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36449226

RESUMEN

A new Azo-Schiff base ligand (H2L) was designed and synthesized as a cation chemosensor. The chemosensor H2L as dual chemosensor showed selective fluorescence recognition of Al3+ with a noticeable fluorescence enhancement and colorimetric detection of Co2 + in aqueous ethanol solution. The H2L exhibits a linear response toward Al3+ ions in the concentration range of 1.91 × 10-8 M to 4.8 × 10-6 M with a limit of detection of 1.91 × 10-8 M. The sensing mechanism of sensor H2L toward Al3+ was investigated by 1H NMR and IR spectroscopies. Fluorescence switch based on the control of EDTA and Al3+ proved H2L could act as a reversible chemosensor. The molecular structure of [NiL] complex has been determined by X-ray crystallography.


Asunto(s)
Aluminio , Cobalto , Aluminio/química , Colorimetría , Bases de Schiff/química , Etanol , Espectrometría de Fluorescencia , Cationes
6.
J Fluoresc ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695499

RESUMEN

In recent years, there is an increasing interest in finding better and more efficient ways to detect CN- ions. Most of the anthraquinone-based probes show less fluorescence This paper presents the design and synthesis of a new anthraquinone based imine probe with good colorimetric sensing property and fluorescent turn on behavior toward CN- ion. Herein, we report a receptor with both colorimetric and fluorescent enhancement of cyanide ion in DMSO medium is synthesized. The synthesized receptor shows an immediate color change from orange to pink when cyanide is added; and it can be readily observed visually due to the presence of diverse p-conjugated systems in the receptor. These studies were confirmed by UV-Visible, PL studies, DFT, HRMS and 1H NMR titration. Moreover, this receptor shows 1:1 stoichiometry and micromolar detection limit. Further the receptor was applied to a real sample in finger millet (Eleusine Coracana) to detect the presence of cyanide ion. Moreover, the receptor is applicable toward INHIBITION, IMPLICATION logic gates with two input systems.

7.
J Fluoresc ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079029

RESUMEN

The receptor-bearing anthraquinone chromophore was synthesized by a simple aldamine condensation reaction, and its anion sensing properties were investigated via colorimetric, UV-vis, photoluminescence, and DFT calculations. The synthesized receptor detects both acetate and hypochlorite ions, where remarkable colorimetric transitions were observed from pink to purple for the acetate ion and pink to blue for the hypochlorite ion. Moreover, in the occurrence of the acetate ion, it shows an admirable answer for the Cr3+ ion, which changes its purple color to pink, while no notable change was observed for other ions. The detection limits of receptors with acetate and hypochlorite are 7.1 × 10-7 M and 9.4 × 10-7 M, respectively. The DFT calculation was performed to better understand the sensing mechanisms of both AcO- and ClO- ions. Furthermore, receptors were effectively utilized in the preparation of optical sensors supported by silica gel for the detection of AcO- and ClO- ions. The receptor proved itself to be potentially useful for real-life application by sensing AcO - in vinegar and ClO - ions in ala. Furthermore, its preeminent detection properties enabled the successful labeling of the AcO- ion in living biological cells.

8.
Mikrochim Acta ; 190(2): 66, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692590

RESUMEN

Blue fluorescent carbon dots (PCDs) were prepared by hydrothermal method with Partridge tea. The ethanol extract of Partridge tea (PEE) was found to emit red fluorescence. Thus, a novel ratiometric sensor was constructed by simply mixing the two fluorophores derived from Partridge tea. The presence of tetracycline (TET) at lower concentrations enhanced the emission peak at 508 nm of PCDs and had a negligible effect on the emission peak at 680 nm of PEE. TET at higher concentrations led to  quenching  both the fluorescence of PCDs and PEE via inner filter effect and fluorescence resonance energy transfer, separately. Good linearities for the detection of TET were obtained in the ranges 0.67 to 15.00 µM and 33.33 to 266.67 µM, with limit of detection of 0.095 µM. The sensor was successfully applied to detect TET in lake water and milk samples with good recoveries ranging from 93.27 ± 4.04% to 107.30 ± 6.16%. This study provided a simple, selective, sensitive, rapid, and environmentally friendly method of monitoring TET residues in the environment and food.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Límite de Detección , Tetraciclina/análisis , Antibacterianos/análisis ,
9.
Mikrochim Acta ; 190(2): 79, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719487

RESUMEN

The potential of coordination polymers (CPs) as a host of integrating multiple guest species to construct a fluorescence resonance energy transfer (FRET) nanoprobe was demonstrated. The ZnCPs built from zinc(II) and adenine was employed as a model of CPs to integrate carbon dot (CD) and phenol red (PR) for producing the FRET nanoprobe (CD/PR@ZnCPs). Benefiting from the confinement effect of ZnCPs, the integrated CD and PR can be brought in close proximity to favor the occurrence of FRET process from CD to PR, which leads to the quenching of CD fluorescence. However, the FRET process was disrupted upon the red-shift of PR absorption from 428 to 562 nm in alkaline medium, and consequently switches on the fluorescence of CD/PR@ZnCPs. Based on this finding, by utilizing urease to hydrolyze urea and mediate medium pH, a turn-on fluorescent method was established for the detection of urease activity. This fluorescent method has a linear response that covers 5 to 150 U/L urease with a detection limit of 0.74 U/L and exhibits an excellent selectivity over other enzymes. The successful determination of urease in saliva samples demonstrates the applicability of the fluorescent nanoprobe in complex biological matrix.


Asunto(s)
Fenolsulfonftaleína , Ureasa , Carbono , Límite de Detección , Polímeros , Nanoestructuras
10.
Molecules ; 29(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202811

RESUMEN

Faced with rising threats of terrorism, environmental and health risks, achieving sensitive and selective detection of peroxide-based explosives (PEs) has become a global focus. In this study, a turn-on fluorescent probe (BOD) based on benzil (H2O2-recognition element) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative (fluorophore) was developed to sensitively and specifically detect hydrogen peroxide (H2O2). The synthesized BOD had a very weak fluorescence due to intramolecular donor-excited photo-induced electron transfer (d-PET) effect; however, it could emit a strong fluorescence since H2O2 selectively oxidized the benzil moiety and released free BODIPY fluorophore (BOD-COOH). As a result, the proposed BOD detected H2O2 in linear detection ranged from 25 to 125 µM with a detection limit of 4.41 µM. Meanwhile, the proposed BOD showed good selectivity toward H2O2, which is not affected by other common reactive oxygen species (ROS) and ions from explosive residues. In addition, a blue shift from 508 to 498 nm was observed in the absorption spectra upon addition of H2O2. More importantly, the BOD was successfully applied for rapid detection of H2O2 vapor with good sensitivity (down to 7 ppb), which holds great potential for practical use in public safety, forensic analysis and environmental monitoring.


Asunto(s)
Compuestos de Boro , Sustancias Explosivas , Peróxido de Hidrógeno , Fenilglioxal/análogos & derivados , Colorantes Fluorescentes , Peróxidos , Ionóforos , Oxígeno
11.
Chemistry ; 28(2): e202103525, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713944

RESUMEN

Masked trimethyl lock (TML) systems as molecular moieties enabling the bioresponsive release of compounds or dyes in a controlled temporal and spatial manner have been widely applied for the development of drug conjugates, prodrugs or molecular imaging tools. Herein, we report the development of a novel amino trimethyl lock (H2 N-TML) system as an auto-immolative molecular entity for the release of fluorophores. We designed Cou-TML-N3 and MURh-TML-N3 , two azide-masked turn-on fluorophores. The latter was demonstrated to selectively release fluorescent MURh in the presence of physiological concentrations of the redox-signaling molecule H2 S in vitro and was successfully applied to image H2 S in human cells.


Asunto(s)
Sulfuro de Hidrógeno , Profármacos , Colorantes Fluorescentes , Humanos , Ionóforos , Imagen Molecular
12.
Anal Biochem ; 646: 114630, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248557

RESUMEN

In this article, a new approach for human serum albumin selective fluorophore design has been reported. The fluorophore reported here comprises a substituted phenol donor and a cationic benzo[e]indolium acceptor connected with a π bond. Originally, the cationic fluorophore did not bind with human serum albumin. Upon deprotonation of the phenolic-OH by a water molecule the cationic form was transformed into an active zwitterionic form. Spectroscopic studies and theoretical calculations revealed that the new active form remained in a zwitterionic state in neutral aqueous solution, and it formed a strong supramolecular complex with human serum albumin. The spontaneous complexation resulted multi-fold increase of fluorescence intensity which increased linearly with the concentrations of the protein, thus giving an analytical tool to monitor human serum albumin in aqueous samples. We believe, this simple strategy applied on appropriate fluorogenic scaffolds would prove useful to develop new and improved turn-on fluorescent probes for pH regulated biological applications.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Humana , Colorantes Fluorescentes/química , Humanos , Albúmina Sérica Humana/química
13.
J Fluoresc ; 32(5): 1703-1712, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35666340

RESUMEN

We constructed a novel-binding site for metal ion detection using a fused tetrazole ring conjugated with aminopyrene (R). The designed structure of the molecule was successfully synthesized and determined the probe's selectivity by testing various metal ions and found that the probe effectively detects Al3+ ion visually. Checked the sensing ability of the probe with different approaches (fluorimetric and colorimetric), and the effectiveness is double confirmed. The added Al3+ ion to R procured a rapid change in color from yellowish orange to colorless. Under the UV lamp, a turn-on blue fluorescence was observed after adding aluminium ion, whereas the probe was non-fluorescent before detecting aluminium ion. The probable interface of the probe with aluminium ion has also been expected from HRMS spectral analysis results. The probe's utility in real-time monitoring of Al3+ ion in water is confirmed by a simple test kit prepared using filter paper. The kit showed a possible naked-eye detection with a notable color change, and when checked, the aluminium ion detected test kit under a UV lamp showed blue fluorescence.


Asunto(s)
Aluminio , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Iones , Pirenos , Tetrazoles
14.
J Fluoresc ; 32(1): 145-153, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643855

RESUMEN

Herein, we designed a sensitive and selective "Turn-On" fluorescence nanosensor using water-soluble carbonaceous fluorescent nanomaterials (CFNs) functionalized with thiourea (CFNs-Thiourea) for efficient detection of trace concentrations of arsenic (III) in aqueous samples. The CFNs and CFNs-Thiourea were characterized by transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis) and fourier transformed infrared spectroscopy (FTIR). The emission peak intensity of proposed nanosensor at 425 nm was gradually enhanced on arsenite addition in a wide detection range (3.3-828.5 µg L-1) attributed to the binding of arsenite species with sulfur groups of CFNs-Thiourea. The limit of detection (LOD) was 0.48 µg L-1 being much lower than the World Health Organization (WHO) recommended threshold value of 10 µg L-1. Furthermore, the as-prepared CFNs-Thiourea exhibited a superb selectivity for As (III) compared to various cations and anions, such as; NO3-, NO2-, F-, Ni2+, Fe3+, Cu2+, Ca2+, Mg2+, Zn2+, Fe2+, Hg2+, Pb2+, F-, Cl-, Mn2+, Cr3+, Co2+, Cd2+, Bi3+, Al3+ and As (V) at 100 folds concentration of As (III). The turn on fluorescence nanosensor was successfully exploited for quantification of arsenic in spiked water samples with acceptable efficiencies.


Asunto(s)
Arsénico/análisis , Fluorescencia , Colorantes Fluorescentes , Nanopartículas , Nanoestructuras , Tiourea/química , Agua/química , Límite de Detección
15.
Artículo en Inglés | MEDLINE | ID: mdl-34720541

RESUMEN

In this article a syringol-π-benz[e]indolium based donor-acceptor fluorophore has been reported. The fluorophore shows a solvent polarity dependent change in the absorption and emission spectra in solution. A combined spectroscopic and time dependent density functional theory (TDDFT) studies reveal higher dipole moment of the fluorophore in the excited state, resulting positive solvatochromism. In physiological pH, the phenol group in the fluorophore is easily deprotonated owing to the electron pulling effect of the substituents. Consequently, the phenolate (PhO-) becomes a strong active donor in the new donor-acceptor pair. In aqueous solution, the new phenolate fluorochrome shows negligible fluorescence due to energy loss via non-radiative pathways from the low-lying polar excited states. The fluorochrome can detect human and bovine serum albumins in physiological buffer solution with high selectivity. The underlying mechanism of human serum albumin (HSA) detection was estimated to be strong (1.46 × 105 M-1, ΔG = -7.05 kcal/mol) supramolecular complexation between the fluorophore and albumin in hydrophobic binding site III-B. The linear relationship between fluorescence intensity and HSA concentration extends from 40 mg/L to an impressive upper limit (540 mg/L), thereby opening an opportunity for albumin detection in a broad range of health conditions. The practical applicability of the fluorophore was tested in spiked urine samples and a good correlation was observed between fluorescence intensity and the concentration of human serum albumin in neutral aqueous samples.

16.
Angew Chem Int Ed Engl ; 61(51): e202213959, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259375

RESUMEN

Rational design of hydrogen-bonded organic frameworks (HOFs) with multiple functionalities is highly sought after but challenging. Herein, we report a multifunctional HOF (HOF-FJU-2) built from 4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzaldehyde molecule with tetrabenzaldeyde for their H bonding interactions and carbazole N-H site for its specific recognition of small molecules. The Lewis acid N-H sites allow HOF-FJU-2 facilely separate acetone from its mixture with another solvent like methanol with smaller pKa value. The donor (D)-π-acceptor (A) aromatic nature of the organic building molecule endows this HOF with solvent dependent luminescent/chromic properties, so the column acetone/methanol separation on HOF-FJU-2 can be readily visualized.


Asunto(s)
Acetona , Metanol , Sitios de Unión , Solventes , Hidrógeno
17.
J Fluoresc ; 31(3): 733-745, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33620620

RESUMEN

The thiosemicarbazide based receptor was synthesized with 4-(diethylamino)salicylaldehyde and N- phenyl-thiosemicarbazide by the simple condensation method and the properties were studied under the naked eye, UV-Vis and fluorescence studies etc. The synthesized receptor detects cyanide, cobalt, and mercury in acetonitrile medium. The observed color changes included colourless to yellow for cyanide, colourless to green for cobalt and colourless to yellow for mercury which were seen under naked eye without the aid of any instruments. Furthermore, the cyanide bound receptor detects Cr3+ by the relay recognition method. The detection limit of receptor with cyanide, cobalt & mercury was found to be 5.8 × 10- 7 M, 3.6 × 10- 7 M and 8.1 × 10- 7 M respectively. Experimental results were verified by DFT calculations. Receptor was successfully employed in the construction of INHIBIT and IMPLICATION logic gates.

18.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008614

RESUMEN

Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD-AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD-AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.


Asunto(s)
Carbono/química , Glutatión/análisis , Oro/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Glutatión/sangre , Nanopartículas del Metal/ultraestructura , Espectroscopía de Fotoelectrones , Puntos Cuánticos/ultraestructura , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Difracción de Rayos X
19.
Molecules ; 26(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572333

RESUMEN

π-Extended di-2-picolylamine (DPA)-substituted 8-hydroxyquinoline (8-HQ) tolans (2) were synthesized for testing electronic and regio-effects. The electron-poor CN-tolan (2b) showed clear selectivity for Cd2+ (>>Zn2+) over other metal ions via turn-on fluorescence, while the electron-rich MeO-tolan (2a) displayed no clear metal selectivity. Furthermore, considering that there was no significant energy difference between the Cd2+ complexes of 1 and 2b, the intended regio-effect (7- vs. 5-substituted effect) did not induce steric hindrance. Thus, the regio-effect is mainly electronic. Considering the above, 2a and 2b constitute a complete showcase in which electronic and regio-effects modulate the metal selectivity. The fluorescence titration of 2b (10 mM) with Cd2+ showed that the limit of detection (LOD) of the Cd2+-selective 2b was 158 nM in PBS (phosphate-buffered saline) (10 mM, pH 7.2) containing 50% MeOH.


Asunto(s)
Aminas/química , Cadmio/química , Electrones , Colorantes Fluorescentes/química , Compuestos Organometálicos/química , Ácidos Picolínicos/química , Quinolinas/química , Fluorescencia
20.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807775

RESUMEN

We describe the synthesis of fluorogenic arylureas and amides and their interaction with primary or secondary amines under air and light in organic-aqueous mixtures to give rise to a new class of persistent organic radicals, described on the basis of their electron paramagnetic resonance (EPR), as well as UV-vis, fluorescence, NMR, and quantum mechanics calculations, and their prospective use as multi-signal reporters in a smart label for fish freshness.


Asunto(s)
Amidas/síntesis química , Aminas/química , Productos Pesqueros/análisis , Colorantes Fluorescentes/síntesis química , Análisis de los Alimentos/métodos , Amidas/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Colorantes Fluorescentes/química , Radicales Libres/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Perciformes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda