Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150638, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39236589

RESUMEN

Haploinsufficiency of the nuclear receptor binding SET domain-containing protein 1 gene (NSD1) leads to a neurodevelopmental disorder known as Sotos syndrome (SOTOS). This study investigated the effects of NSD1 knockdown in glial cells. U87MG glioma cells were transfected with siRNA targeting NSD1, which resulted in morphological changes characteristic of activated astrocytes. These activated phenotypes were accompanied by specific activation of mitogen-activated protein kinase (MAPK) signaling pathways, particularly those mediated by p38 MAPK and c-Jun N-terminal kinase (JNK). Transcriptome analysis showed increased expression of proinflammatory cytokine genes, particularly interleukin (IL)-1α, IL-1ß, and IL-6, following NSD1 knockdown. Treatment with MAPK inhibitors significantly reduced the cytokine induction caused by NSD1 knockdown, with the p38 MAPK inhibitor being more effective than the JNK inhibitor. These findings provide new insights into the role of NSD1 loss in neurological dysfunctions associated with SOTOS.

2.
Arch Biochem Biophys ; 758: 110073, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914217

RESUMEN

BACKGROUND: The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS: Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS: The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION: The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas de Homeodominio , Proteínas Serina-Treonina Quinasas , Humanos , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Genes Homeobox , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
Nanotechnology ; 35(42)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39025086

RESUMEN

The study explores anticancer potential of telmisartan (TS) loaded lipid nanocarriers (TLNs) in glioma cells as a potential repurposing nanomodality along with estimation of drug availability at rat brain. Experimental TLNs were produced by previously reported method and characterized.In vitroanticancer efficacy of experimental TLNs was estimated by MTT, confocal microscopy, and FACs analysis in glioma cells. Plasma and brain pharmacokinetic (PK) parameters were also analysed by LCMS/MS. Spherical, nanosized, homogenous, unilamellar, TLNs were reported having desirable drug loading (9.5% ± 0.6%), negative zeta potential and sustained TS release tendency. FITC-TLNs were sufficiently internalized into U87MG cells line within 0.5 h incubation period. IC50for TLNs was considerably higher than free TS in the tested glioma cell lines. Further, TLNs induced superior apoptotic effect in U87MG cells than TS. PK (plasma/brain) data depicted higher AUC,Vss, MRT with lower Cltfor TLNs suggesting improved bioavailability,in vivoresidence and sustained drug availability than free TS administration. Docking studies rationalizedin vitro/in vivoresults as preferably higher binding affinity (docking score:12.4) was detected for TS with glioma proteins. Further,in vivostudies in glioma bearing xenograft model is underway for futuristic clinical validation of TLNs.


Asunto(s)
Apoptosis , Portadores de Fármacos , Glioma , Lípidos , Nanopartículas , Telmisartán , Telmisartán/farmacocinética , Telmisartán/farmacología , Telmisartán/química , Telmisartán/administración & dosificación , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Humanos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ratas , Nanopartículas/química , Lípidos/química , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos , Masculino , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Liberación de Fármacos
4.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861539

RESUMEN

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicina Hidroximetiltransferasa , Humanos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/fisiología , Hipoxia de la Célula/genética , Glutamina/metabolismo , Técnicas de Silenciamiento del Gen
5.
Endocr Regul ; 58(1): 47-56, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563293

RESUMEN

OBJECTIVE.: Homeobox genes play an important role in health and disease including oncogenesis. The present investigation aimed to study ERN1-dependent hypoxic regulation of the expression of genes encoding homeobox proteins MEIS (zinc finger E-box binding homeobox 2) and LIM homeobox 1 family, SPAG4 (sperm associated antigen 4) and NKX3-1 (NK3 homeobox 1) in U87MG glioblastoma cells in response to inhibition of ERN1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioblastoma growth. METHODS.: The expression level of homeobox genes was studied in control (transfected by vector) and ERN1 knockdown U87MG glioblastoma cells under hypoxia induced by dimethyloxalylglycine (0.5 mM for 4 h) by quantitative polymerase chain reaction and normalized to ACTB. RESULTS.: It was found that hypoxia down-regulated the expression level of LHX2, LHX6, MEIS2, and NKX3-1 genes but up-regulated the expression level of MEIS1, LHX1, MEIS3, and SPAG4 genes in control glioblastoma cells. At the same time, ERN1 knockdown of glioblastoma cells significantly modified the sensitivity of all studied genes to a hypoxic condition. Thus, ERN1 knockdown of glioblastoma cells removed the effect of hypoxia on the expression of MEIS1 and LHX1 genes, but increased the sensitivity of MEIS2, LHX2, and LHX6 genes to hypoxia. However, the expression of MEIS3, NKX3-1, and SPAG4 genes had decreased sensitivity to hypoxia in ERN1 knockdown glioblastoma cells. Moreover, more pronounced changes under the conditions of ERN1 inhibition were detected for the pro-oncogenic gene SPAG4. CONCLUSION.: The results of the present study demonstrate that hypoxia affected the expression of homeobox genes MEIS1, MEIS2, MEIS3, LHX1, LHX2, LHX6, SPAG4, and NKX3-1 in U87MG glioblastoma cells in gene-specific manner and that the sensitivity of all studied genes to hypoxia condition is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling, and possibly contributed to the control of glioblastoma growth. A fundamentally new results of this work is the establishment of the fact regarding the dependence of hypoxic regulation of SPAG4 gene expression on ER stress, in particular ERN1, which is associated with suppression of cell proliferation and tumor growth.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Genes Homeobox , Proteínas Serina-Treonina Quinasas/genética , Proteínas con Homeodominio LIM/genética , Hipoxia de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Hipoxia/genética , Factores de Transcripción/genética , Expresión Génica , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Endorribonucleasas/genética
6.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656254

RESUMEN

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Serina/biosíntesis , Transducción de Señal
7.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892185

RESUMEN

N-methylpyridinium (NMP) is produced through the pyrolysis of trigonelline during the coffee bean roasting process. Preliminary studies suggest that NMP may have health benefits, thanks to its antioxidant properties. Based on this background, the aim of this study was to evaluate whether NMP could have a protective effect against LPS-induced neuroinflammation in human glioblastoma cells (U87MG). With this aim, U87MG cells were pre-treated with NMP (0.5 µM) for 1 h and then exposed to LPS (1 µg/mL) for 24 h. Our findings show that NMP attenuates LPS-induced neuroinflammation by reducing the expression of pro-inflammatory cytokines, such as IL-1ß, TNF-α and IL-6, through the inhibition of the NF-κB signaling pathway, which is critical in regulating inflammatory responses. NMP is able to suppress the activation of the NF-κB signaling pathway, suggesting its potential in preventing neuroinflammatory conditions. These outcomes support the notion that regular consumption of NMP, possibly through coffee consumption, may offer protection against neuroinflammatory states implicated in neurological disorders.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Compuestos de Piridinio , Transducción de Señal , Humanos , Fármacos Neuroprotectores/farmacología , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Transducción de Señal/efectos de los fármacos , Compuestos de Piridinio/farmacología , Línea Celular Tumoral , Citocinas/metabolismo
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , Angiogénesis , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
9.
BMC Cancer ; 23(1): 806, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644431

RESUMEN

BACKGROUND: HeberFERON is a co-formulation of α2b and γ interferons, based on their synergism, which has shown its clinical superiority over individual interferons in basal cell carcinomas. In glioblastoma (GBM), HeberFERON has displayed promising preclinical and clinical results. This led us to design a microarray experiment aimed at identifying the molecular mechanisms involved in the distinctive effect of HeberFERON compared to the individual interferons in U-87MG model. METHODS: Transcriptional expression profiling including a control (untreated) and three groups receiving α2b-interferon, γ-interferon and HeberFERON was performed using an Illumina HT-12 microarray platform. Unsupervised methods for gene and sample grouping, identification of differentially expressed genes, functional enrichment and network analysis computational biology methods were applied to identify distinctive transcription patterns of HeberFERON. Validation of most representative genes was performed by qPCR. For the cell cycle analysis of cells treated with HeberFERON for 24 h, 48 and 72 h we used flow cytometry. RESULTS: The three treatments show different behavior based on the gene expression profiles. The enrichment analysis identified several mitotic cell cycle related events, in particular from prometaphase to anaphase, which are exclusively targeted by HeberFERON. The FOXM1 transcription factor network that is involved in several cell cycle phases and is highly expressed in GBMs, is significantly down regulated. Flow cytometry experiments corroborated the action of HeberFERON on the cell cycle in a dose and time dependent manner with a clear cellular arrest as of 24 h post-treatment. Despite the fact that p53 was not down-regulated, several genes involved in its regulatory activity were functionally enriched. Network analysis also revealed a strong relationship of p53 with genes targeted by HeberFERON. We propose a mechanistic model to explain this distinctive action, based on the simultaneous activation of PKR and ATF3, p53 phosphorylation changes, as well as its reduced MDM2 mediated ubiquitination and export from the nucleus to the cytoplasm. PLK1, AURKB, BIRC5 and CCNB1 genes, all regulated by FOXM1, also play central roles in this model. These and other interactions could explain a G2/M arrest and the effect of HeberFERON on the proliferation of U-87MG. CONCLUSIONS: We proposed molecular mechanisms underlying the distinctive behavior of HeberFERON compared to the treatments with the individual interferons in U-87MG model, where cell cycle related events were highly relevant.


Asunto(s)
Glioblastoma , Neoplasias Cutáneas , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Interferón-alfa/farmacología , Anafase , Interferón gamma/farmacología
10.
Endocr Regul ; 57(1): 252-261, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823569

RESUMEN

Objective. Serine synthesis as well as endoplasmic reticulum stress and hypoxia are important factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling) significantly suppressed the glioblastoma cell proliferation and modified the hypoxia regulation. The present study is aimed to investigate the impact of hypoxia on the expression of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine aminotransferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) in U87MG glioblastoma cells in relation to knockdown of ERN1 with the intent to reveal the role of ERN1 signaling pathway on the endoplasmic reticulum stress-dependent regulation of expression of these genes. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed to hypoxia introduced by dimethyloxalylglycine for 4 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH, PSAT1, PDPH, SHMT1, and ATF4 genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that hypoxia up-regulated the expression level of PHGDH, PSAT1, and ATF4 genes in control U87MG cells, but PSPH and SHMT1 genes expression was down-regulated. The expression of PHGDH, PSAT1, and ATF4 genes in glioblastoma cells with knockdown of ERN1 signaling protein was more sensitive to hypoxia, especially PSAT1 gene. At the same time, the expression of PSPH gene in ERN1 knockdown cells was resistant to hypoxia. The expression of SHMT1 gene, encoding the enzyme responsible for conversion of serine to glycine, showed similar negative sensitivity to hypoxia in both control and ERN1 knockdown glioblastoma cells. Conclusion. The results of the present study demonstrate that the expression of genes responsible for serine synthesis is sensitive to hypoxia in gene-specific manner and that ERN1 knockdown significantly modifies the impact of hypoxia on the expression of PHGDH, PSAT1, PSPH, and ATF4 genes in glioblastoma cells and reflects the ERN1-mediated reprograming of hypoxic regulation at gene expression level.


Asunto(s)
Glioblastoma , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Glioblastoma/genética , Hipoxia de la Célula/genética , Serina/genética , Serina/metabolismo , Endorribonucleasas/genética , Hipoxia/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética
11.
Metab Brain Dis ; 38(2): 393-408, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35438378

RESUMEN

Glioblastoma is one of the deadliest malignant gliomas. Capsaicin is a homovanillic acid derivative that can show anti-cancer effects by regulating various signaling pathways. The aim of this study is to investigate the effects of capsaicin on cell proliferation via ferroptosis in human U87-MG and U251 glioblastoma cells. Firstly, effects of capsaicin treatment on cell viability were determined by MTT analysis. Next, cellular-proliferation and cytotoxicity assays were determined by analyzing bromodeoxyuridine (BrdU) and lactate dehydrogenase (LDH) activity, respectively. Following, acyl-CoA synthetase long chain family member 4 (ACSL4), glutathione peroxidase 4 (GPx4), 5-hydroxyeicosatetraenoic acid (5-HETE), total oxidant status (TOS), malondialdehyde (MDA), total antioxidant status (TAS) and reduced glutathione (GSH) levels were determined by ELISA. Additionally, ACSL4 and GPx4 mRNA and protein levels were analyzed. Capsaicin showed a concentration-dependent anti-proliferative effects in U87-MG and U251 cells. Cell viability was decreased in the both cell lines treated with capsaicin concentrations above 50 µM, while LDH activity increased. Treatment of 121.6, 188.5, and 237.2 µM capsaicin concentrations for 24 h indicated an increase in ACSL4, 5-HETE, TOS and MDA levels in U87-MG and U251 cells (p < 0.05). On the other hand, we found that capsaicin administration caused a decrease in BrdU, GPx4, TAS and GSH levels in U87-MG and U251 cells (p < 0.05). Besides, ACSL4 mRNA and protein levels were increased in the glioblastoma cells treated with capsaicin, whereas GPx4 mRNA and protein levels were decreased. Finally, capsaicin might be used as a potential anticancer agent with ferroptosis-induced anti-proliferative effects in the treatment of human glioblastoma.


Asunto(s)
Ferroptosis , Glioblastoma , Humanos , Glioblastoma/metabolismo , Capsaicina/farmacología , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Línea Celular Tumoral , Transducción de Señal , Oxidación-Reducción , ARN Mensajero/metabolismo
12.
Chem Biodivers ; 20(2): e202201117, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36536551

RESUMEN

Thirty-seven novel chalcone-phenazine hybrid molecules (C1∼C13 and F1∼F24) with 1,2,3-triazole or ethyl group as linkers were designed and synthesized in this study. Some compounds exhibited selective cytotoxicity against U87-MG cancer cell lines in vitro, in which compound C4 were found to have the best antiproliferative activity. SAR study indicated 1,2,3-triazole group may be crucial for enhancing compounds' cytotoxicity. C4 was verified to induce ferroptosis in U87-MG cells by transcription, lipid peroxidation, lipid ROS assays. Furthermore, C4 was up-regulated LC3-II, degradated FTH1, and then increasing iron resulted in the down-regulation of NCOA4. Together, all above evidences highlighted the potential of compound C4 that triggered ferroptosis by activating ferritinophagy against U87-MG cells.


Asunto(s)
Chalcona , Chalconas , Ferroptosis , Fenazinas , Triazoles , Autofagia
13.
Curr Ther Res Clin Exp ; 98: 100695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936719

RESUMEN

Background: Glial tumors are the most common primary malignant central nervous system tumors. They are hard to treat, not only because of the deregulation in multiple pathways but also because they are not contained in a well-defined mass with clear borders. The use of a single therapeutic agent to target gliomas has yielded unsatisfactory results. Objective: A combination of molecules targeting multiple pathways may prove to be a better alternative. Methods: The effect of caffeic acid phenethyl ester and crocin on the proliferation and death of U87-MG cells over a concentration range was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. A colony formation assay was used to measure the effect of caffeic acid phenethyl ester and crocin on contact inhibition and anchorage independence ability of U87-MG cells. Furthermore, apoptosis in U87-MG cells was analyzed by propidium iodide assay. Real-time polymerase chain reaction and Western blotting were performed to determine the expression level of p53, epidermal growth factor receptor, and proliferating cell nuclear antigen. Results: Caffeic acid phenethyl ester and crocin when used in combination present an anticancer potential for glioma. These molecules, in combination, inhibit proliferation and induce apoptosis in U87-MG glioma cells. Our results provide evidence that combination treatment realigns the expression paradigm of p53, epidermal growth factor receptor, and proliferating cell nuclear antigen in cotreated U87-MG cells. Conclusions: The combination of caffeic acid phenethyl ester and crocin led to inhibition in glioma cell proliferation and might prove to be an effective adjunct to the therapies in vogue.

14.
Growth Factors ; 40(1-2): 37-45, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35442129

RESUMEN

CHF6467 is a mutated form of human recombinant nerve growth factor (NGF). The mutation selectively disrupts the binding of NGF to its p75NTR receptor while maintaining the affinity toward TrkA receptor. Because of such different profile of receptor interaction, CHF6467 maintains unaltered the neurotrophic and neuroprotective properties of wild-type NGF but shows reduced algogenic activity.In this study, we investigated the effects of CHF6467 on mortality, proliferation, cell-damage and migration in three human glioblastoma cell lines (U87MG, T98G, LN18), and in the rat astrocytoma C6 cells. Both CHF6467 and wild-type NGF, given in the range 1-50 ng/ml, did not modify cell proliferation, metabolism and migration, as well as the number of live/dead cells.The present in vitro data are predictive of a lack of tumorigenic activity by both wild-type NGF and CHF6467 on these cell types in vivo, and warrant for CHF6467 further clinical development.


Asunto(s)
Glioblastoma , Factor de Crecimiento Nervioso , Animales , Línea Celular , Glioblastoma/genética , Humanos , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Ratas , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
15.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054889

RESUMEN

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/diagnóstico , Glioblastoma/patología , Humanos , Masculino , Microscopía Fluorescente , Ratas
16.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234681

RESUMEN

Chrysomycin A (Chr-A), an antibiotic from Streptomyces, is reported to have anti-tumor and anti-tuberculous activities, but its anti-glioblastoma activity and possible mechanism are not clear. Therefore, the current study was to investigate the mechanism of Chr-A against glioblastoma using U251 and U87-MG human cells. CCK8 assays, EdU-DNA synthesis assays and LDH assays were carried out to detect cell viability, proliferation and cytotoxicity of U251 and U87-MG cells, respectively. Transwell assays were performed to detect the invasion and migration abilities of glioblastoma cells. Western blot was used to validate the potential proteins. Chr-A treatment significantly inhibited the growth of glioblastoma cells and weakened the ability of cell migration and invasion by down regulating the expression of slug, MMP2 and MMP9. Furthermore, Chr-A also down regulated Akt, p-Akt, GSK-3ß, p-GSK-3ß and their downstream proteins, such as ß-catenin and c-Myc in human glioblastoma cells. In conclusion, Chr-A may inhibit the proliferation, migration and invasion of glioblastoma cells through the Akt/GSK-3ß/ß-catenin signaling pathway.


Asunto(s)
Glioblastoma , beta Catenina , Aminoglicósidos , Antibacterianos/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , ADN/farmacología , Glioblastoma/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo
17.
Molecules ; 27(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684404

RESUMEN

New coordination compounds of Mn(II), Fe(III), Co(II), and Ni(II) and the biologically active ligand L (N'-benzylidenepyrazine-2-carbohydrazonamide) were synthesized and characterized by appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG-DTG), infrared spectroscopy (FTIR), and flame-atomic absorption spectrometry (F-AAS). The biological activity of the obtained compounds was then comprehensively investigated. Rational use of these compounds as potential drugs was proven by ADME analysis. All obtained compounds were screened in vitro for antibacterial, antifungal, and anticancer activities. Some of the studied complexes exhibited significantly higher activity than the ligand alone.


Asunto(s)
Complejos de Coordinación , Antibacterianos/química , Antibacterianos/farmacología , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Compuestos Férricos , Ligandos , Manganeso/química , Pruebas de Sensibilidad Microbiana , Níquel/química , Pirazinas/farmacología
18.
J Clin Lab Anal ; 35(12): e24066, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714963

RESUMEN

BACKGROUND: Expression of the TAZ gene is closely related to the prognosis of glioma patients. We hoped to find long noncoding RNAs (lncRNAs) related to TAZ and a new target for glioma treatment. METHODS: TAZ-related genes were found by dual-luciferase reporter gene assay, and the correlation of each gene was analyzed by the Pearson method. Human glioma cell lines U87 MG and U251 and glioma rats were used for cytology assays, and the related genes were transfected. We conducted immunohistochemistry, RT-qPCR, Western blotting, CCK8 test, flow cytometry, transwell assays, clone formation analysis, and tumor weight measurements to verify the above relationship. RESULTS: We found that miR-125a-5p was closely related to the TAZ gene, and the lncRNA MIR4435-2HG was closely related to miR-125a-5p. Both MIR4435-2HG-OE and TAZ increased the expression of the TAZ gene, activated the Wnt signaling pathway, inhibited apoptosis, and promoted migration and proliferation in glioma cells. Besides, it also increased the tumor volume of gliomas in a rat model subcutaneously inoculated with glioma cells. We also found miR-125a-5p could block the effect of MIR4435-2HG-OE and TAZ. CONCLUSIONS: LncRNA MIR4435-2HG obstructs the functions of miR-125a-5p and promotes neuroglioma development by upregulating the TAZ gene.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética , Anciano , Animales , Apoptosis/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Masculino , Persona de Mediana Edad , Ratas Endogámicas F344 , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Labelled Comp Radiopharm ; 64(3): 129-139, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119930

RESUMEN

In this study, we developed a saccharin (SAC)-based radiopharmaceutical (68 Ga-NOTA-SAC) and evaluated the possibility of its application as a PET tracer in the diagnosis of carbonic anhydrase IX (CA IX)-overexpressed tumors. We did a water-soluble tetrazolium assay and flow cytometry analysis to identify the cell viability decrease by SAC. The radiochemical purity and stability of 68 Ga- NOTA-SAC in human and mouse serum was greater than 98%. The small animal PET image-based radioactivity distribution of all organs decreased over time.68 Ga-NOTA-SAC presented the highest tumor-to-muscle ratio at 90 min post injection (p.i). The growth rates of tumor-to-muscle ratios of 68 Ga-NOTA-SAC were 88% at 60 min and 220% at 90 min, compared to 30 min p.i. The potential of 68 Ga-NOTA-SAC as a PET tracer is expected to contribute to the diagnostic research on CA IX-overexpressed tumors with the advantages of a relatively simple synthesis method.


Asunto(s)
Antígenos de Neoplasias , Anhidrasa Carbónica IX
20.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681862

RESUMEN

Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 µM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glioblastoma/metabolismo , Glioblastoma/patología , Glutatión/metabolismo , Humanos , Isotiocianatos/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Sulfóxidos/administración & dosificación , Hipoxia Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda