Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Virol ; 97(10): e0124123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772824

RESUMEN

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Asunto(s)
Antígenos CD34 , Citomegalovirus , Proteínas Dishevelled , Células Madre Hematopoyéticas , Proteínas Virales , Activación Viral , beta Catenina , Humanos , Antígenos CD34/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiología , Proteínas Dishevelled/química , Proteínas Dishevelled/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , Dominios PDZ , Proteínas Virales/química , Proteínas Virales/metabolismo , Latencia del Virus/genética
2.
J Biol Chem ; 292(38): 15611-15621, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28743747

RESUMEN

During lytic infection, herpes simplex virus (HSV) DNA is replicated by a mechanism involving DNA recombination. For instance, replication of the HSV-1 genome produces X- and Y-branched structures, reminiscent of recombination intermediates. HSV-1's replication machinery includes a trimeric helicase-primase composed of helicase (UL5) and primase (UL52) subunits and a third subunit, UL8. UL8 has been reported to stimulate the helicase and primase activities of the complex in the presence of ICP8, an HSV-1 protein that functions as an annealase, a protein that binds complementary single-stranded DNA (ssDNA) and facilitates its annealing to duplex DNA. UL8 also influences the intracellular localization of the UL5/UL52 subunits, but UL8's catalytic activities are not known. In this study we used a combination of biochemical techniques and transmission electron microscopy. First, we report that UL8 alone forms protein filaments in solution. Moreover, we also found that UL8 binds to ssDNAs >50-nucletides long and promotes the annealing of complementary ssDNA to generate highly branched duplex DNA structures. Finally, UL8 has a very high affinity for replication fork structures containing a gap in the lagging strand as short as 15 nucleotides, suggesting that UL8 may aid in directing or loading the trimeric complex onto a replication fork. The properties of UL8 uncovered here suggest that UL8 may be involved in the generation of the X- and Y-branched structures that are the hallmarks of HSV replication.


Asunto(s)
ADN Helicasas/metabolismo , ADN Primasa/metabolismo , Replicación del ADN , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Proteínas Virales/metabolismo , Secuencia de Bases , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Herpesvirus Humano 1/ultraestructura , Peso Molecular
3.
Antiviral Res ; 228: 105936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908520

RESUMEN

Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.


Asunto(s)
Bioingeniería , Herpes Simple , Herpesvirus Humano 1 , Liposomas , ARN Interferente Pequeño , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Animales , Ratones , Herpes Simple/tratamiento farmacológico , Herpes Simple/prevención & control , Humanos , Bioingeniería/métodos , Antivirales/farmacología , Antivirales/administración & dosificación , Proteínas Virales/genética , Carga Viral/efectos de los fármacos , Ratones Endogámicos BALB C , Nanopartículas/química , Femenino , Interferencia de ARN
4.
Viruses ; 14(6)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746758

RESUMEN

Two-thirds of the world's population is infected with HSV-1, which is closely associated with many diseases, such as Gingival stomatitis and viral encephalitis. However, the drugs that are currently clinically effective in treating HSV-1 are Acyclovir (ACV), Ganciclovir, and Valacyclovir. Due to the widespread use of ACV, the number of drug-resistant strains of ACV is increasing, so searching for new anti-HSV-1 drugs is urgent. The oleanolic-acid derivative AXX-18 showed a CC50 value of 44.69 µM for toxicity to HaCaT cells and an EC50 value of 1.47 µM for anti-HSV-1/F. In addition, AXX-18 showed significant inhibition of ACV-resistant strains 153, 106, and Blue, and the anti-HSV-1 activity of AXX-18 was higher than that of oleanolic acid. The mechanism of action of AXX-18 was found to be similar to that of oleanolic acid, except that AXX-18 could act on both the UL8 and UL52 proteins of the uncoupling helicase-primase enzyme, whereas oleanolic acid could only act on the UL8 protein. We have elucidated the antiviral mechanism of AXX-18 in detail and, finally, found that AXX-18 significantly inhibited the formation of skin herpes. In conclusion, we have explored the anti-HSV-1 activity of AXX-18 in vitro and in vivo as well as identification of its potential target proteins, which will provide a theoretical basis for the development of subsequent anti-HSV-1 drugs.


Asunto(s)
Herpesvirus Humano 1 , Ácido Oleanólico , Aciclovir/farmacología , Antivirales/metabolismo , Antivirales/farmacología , Genes Virales , Herpesvirus Humano 1/genética , Ácido Oleanólico/farmacología , Proteínas Virales/genética
5.
Front Microbiol ; 12: 689607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354687

RESUMEN

Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda